This proposal, that is part of the Bristol-Open University-ISIS long term programme, is to undertake a series of neutron diffraction experiments to gain an understanding of the interaction between the applied and residual stresses in pre-cracked samples extracted from plates of Type 316 stainless steel welded to P91 ferritic steel.This proposal is an integral part of Indo-UK collaborative project funded by EPSRC called ?DMW-Creep?. One objective in this EPSRC project is to understand the underlying mechanics and physics of creep failure occurring at and near to the weld interface between two metals.
New methods for joining materials used in advanced nuclear power plants are of interest to increase the efficiency and productivity. Optimised joints require narrow heat affected zones, low residual stress, strain and distortion. This requires research into a large range of aspects including the nature of the joining processes, characterisation of the joint materials and the integrity of joints in manufacture and service. Of particular interest is the laser welding of the P91 steel used extensively in the power plants. The objective of this paper is to fully characterise the laser welding process using numerical modelling techniques and compare the measured residual stresses for P91 steel welds induced by the welding process with the predicted residual stresses by numerical simulation. The FE simulation consists of thermal analysis and a sequentially coupled structural analysis. Solid state phase transformation is included in the analysis to account for the volumetric changes due to martensitic transformation during cooling. The neutron diffraction technique is used to measure the residual stresses in the welded plate. The measurements are compared with the simulation results and the characteristics of the residual stress distribution and the influence of phase transformations are discussed.
This paper proposes a simple, yet effective, modified crystal plasticity framework which is capable of modelling plasticity and creep deformation. In particular, the proposed model is sufficiently versatile to capture the effects of complex load histories on polycrystals, representative of those experienced by real materials in industrial plant. Specifically, the methodology was motivated by the need in the power generation industry to determine whether cyclic pre-straining influences the subsequent creep behaviour of type 316H austenitic stainless steel as compared to non-cyclically pre-strained material. Cyclic pre-straining occurs widely in plant and it is of paramount importance to accurately account for its impact on the subsequent deformation and integrity of relevant components. The framework proposed in this paper considers the effects of dislocation glide and climb in a relatively simple manner. It is calibrated using experimental tests on 316H stainless steel subjected solely to monotonic plasticity and forward creep. Predictions are then obtained for the creep response of the same material after it had been subjected to cycles of pre-strain. The predictions are compared to experimental results and good agreement was observed. The results show slower creep strain accumulation following prior cyclic loading attributed to hardening structures developed in the material during the cyclic pre-strain. The model also highlights the importance of accounting for directionality of hardening under reverse loading. This is hypothesized to affect the development of an internal stress state at an intragranular level which is likely to affect subsequent creep accumulation.
Residual stresses in welds pose a significant threat to the structural integrity of a component, especially in the presence of defects and are required to be accounted for in assessing component safety. Although the R6 assessment procedure suggests various approximate methods for incorporating these effects in defect assessment, most of them are overly conservative and not very cost-effective. A more reliable approach is to characterise the weld residual stresses around a defect and study how they interact with primary load. The current paper analyses the effects of weld residual stresses on the fracture of a dissimilar weld in the presence of defect. The weld is made between modified 9Cr–1Mo steel and 316LN stainless steel using autogenous electron beam welding. A C(T) specimen was extracted from the centre of the weld and a crack introduced in the fusion zone using electro-discharge machining. The residual stresses around the crack were measured on a grid of measurement points at mid-thickness of the C(T) specimen using neutron diffraction on the strain diffractometer SALSA at ILL, Grenoble. The measured residual stresses around the crack-tip were incorporated into a finite element model and the interaction of these with applied load was predicted under fracture.
Dissimilar metal welds are often used in nuclear reactors to connect the ferritic components to the austenitic stainless steel pipes. One of the pressing concerns of such design is the presence of cracks at the interface. The situation is further complicated by the differences in the yield strength at the interface compared to the base materials, the existence of residual stresses in high magnitude and the loading conditions of the crack in service. Residual stresses when combined with the service loads may affect the susceptibility to failure. Therefore studying the interaction between the applied and residual stresses in a component is crucial to understand the fracture behaviour and the accurate failure assessment of cracks. The objective of the following research is to assess the fracture behaviour of the crack located at the interface of a dissimilar metal weld between the ferritic P91 steel to an austenitic AISI 316LN steel made from electron beam (EB) welding, using a 3D elastic-plastic finite element analysis under the presence of residual stresses. A numerical model was developed to simulate the fracture behaviour of cracked body under applied load in the presence of residual stresses from the welding process and predict the J-integral around the crack tip. The numerical model was developed in stages to simulate the welding process, extraction of C(T) blank specimen and finally the behaviour of the cracked body under residual stresses and service loads. The model was validated at various stages using neutron diffraction measurements on the welded plate, after the C(T) specimen extraction but prior to the introduction of the crack and the residual stresses around the crack tip after the introduction of crack.
This paper is a research output of DMW-Creep project which is part of a national UK programme through the RCUK Energy programme and India's Department of Atomic Energy. The research is focussed on understanding the characteristics of welded joints between austenitic stainless steel and ferritic steel that are widely used in many nuclear power generating plants and petrochemical industries as well as conventional coal and gas-fired power systems. The members of the DMW-Creep project have undertaken parallel round robin activities measuring the residual stresses generated by a dissimilar metal weld (DMW) between AISI 316L(N) austenitic stainless steel and P91 ferritic-martensitic steel. Electron beam (EB) welding was employed to produce a single bead weld on a plate specimen and an additional smoothing pass (known cosmetic pass) was then introduced using a defocused beam. The welding residual stresses have been measured by five experimental methods including (I) neutron diffraction (ND), (II) X-Ray diffraction (XRD), (III) contour method (CM), (IV) incremental deep hole drilling (iDHD) and (V) incremental centre hole drilling (iCHD). The round robin measurements of weld residual stresses are compared in order to characterise surface and sub-surface residual stresses comprehensively.
Abstract Dissimilar metal welds are often required in nuclear power plants to join components made from austenitic steels to those from ferritic steels, particularly in fast breeder reactor plants, in order to join the intermediate heat exchanger to the steam generator. The process of welding alters the microstructure of the base materials and causes residual stresses to form, both because of the change in the microstructure and the differing thermal histories in various regions. Postweld heat treatment (PWHT) is required to relieve the residual stresses and achieve preferable microstructural gradients across the weld joint. Therefore, in order to arrive at the optimal PWHT process, it is necessary to investigate the effects of heat treatment on the joint integrity, microstructure, and residual stress relaxation in the welds. To investigate the effect of PWHT on the residual stress relaxation and corresponding alteration of microstructure across a welded joint, a dissimilar weld between modified 9Cr-1Mo steel and austenitic stainless steel AISI 316LN was made using autogenous electron beam welding. To achieve this, the welding process was first modeled numerically using finite element analysis, and the residual stress predictions were validated by experimental investigation using neutron diffraction. The validated model was then used to study the residual stress relaxation through the simulation of PWHT. The predicted stress relaxation was compared with contour method measurement of residual stresses in the actual welded plate subjected to PWHT. The results indicate that, although some relaxation of residual stresses occurred during PWHT, there is still a significant portion of highly localized residual stresses left in the specimen.