Flight loss has occurred in many winged insect taxa. The flightless silkmoth Bombyx mori, is domesticated from the wild silkmoth, Bombyx mandarina, which can fly. In this paper, we studied morphological characteristics attributed to flightlessness in silkmoths. Three domestic flightless B. mori strains and one B. mandarina population were used to compare morphological components of the flight apparatus, including wing characteristics (shape, forewing area, loading, and stiffness), flight muscle (weight, ratio, and microscopic detail) and body mass. Compared with B. mandarina, B. mori strains have a larger body, greater wing loading, more flexible wings and a lower flight muscle ratio. The arrangement in microscopy of dorsal longitudinal flight muscles (DLFMs) of B. mori was irregular. Comparative analysis of the sexes suggests that degeneration of flight muscles and reduction of wing mechanical properties (stiffness) are associated with silkmoth flightlessness. The findings provide important clues for further research of the molecular mechanisms of B. mori flight loss.
Abstract The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.
Abstract Insect wings are subject to strong selective pressure, resulting in the evolution of remarkably diverse wing shapes that largely determine flight capacity. However, the genetic basis and regulatory mechanisms underlying wing shape development are not well understood. The silkworm Bombyx mori micropterous ( mp ) mutant exhibits shortened wing length and enlarged vein spacings, albeit without changes in total wing area. Thus, the mp mutant comprises a valuable genetic resource for studying wing shape development. In this study, we used molecular mapping to identify the gene responsible for the mp phenotype and designated it Bmmp . Phenotype-causing mutations were identified as indels and single nucleotide polymorphisms in non-coding regions. These mutations resulted in decreased Bmmp mRNA levels and changes in transcript isoform composition. Bmmp null mutants were generated by CRISPR/Cas9 and exhibited significantly smaller wings. By examining the expression of genes critical to wing development in wildtype and Bmmp null mutants, we found that Bmmp exerts its function by coordinately modulating anterior-posterior and proximal-distal axis development. We also studied a Drosophila mp mutant and found that Bmmp is functionally conserved in Drosophila . The Drosophila mp mutant strain exhibits curly wings of reduced size and a complete loss of flight capacity. Our results increase our understanding of the mechanisms underpinning insect wing development and reveal potential targets for pest control.
Insect wings are subject to strong selective pressure, resulting in the evolution of remarkably diverse wing morphologies that largely determine flight capacity. However, the genetic basis and regulatory mechanisms underlying wing size and shape development are not well understood. The silkworm Bombyx mori micropterous (mp) mutant exhibits shortened wing length and enlarged vein spacings, albeit without changes in total wing area. Thus, the mp mutant comprises a valuable genetic resource for studying wing development. In this study, we used molecular mapping to identify the gene responsible for the mp phenotype and designated it Bmmp. Phenotype-causing mutations were identified as indels and single nucleotide polymorphisms in noncoding regions. These mutations resulted in decreased Bmmp messenger RNA levels and changes in transcript isoform composition. Bmmp null mutants were generated by clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 and exhibited changed wing shape, similar to mp mutants, and significantly smaller total wing area. By examining the expression of genes critical to wing development in wildtype and Bmmp null mutants, we found that Bmmp exerts its function by coordinately modulating anterior-posterior and proximal-distal axes development. We also studied a Drosophila mp mutant and found that Bmmp is functionally conserved in Drosophila. The Drosophila mp mutant strain exhibits curly wings of reduced size and a complete loss of flight capacity. Our results increase our understanding of the mechanisms underpinning insect wing development and reveal potential targets for pest control.
Additional file 2 : Table S2. Genome-wide identification of BmEMEs and their orthologues in Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens.
tRNA molecules have well-defined sequence conservations that reflect the conserved tertiary pairs maintaining their architecture and functions during the translation processes. An analysis of aligned tRNA sequences present in the GtRNAdb database (the Lowe Laboratory, University of California, Santa Cruz) led to surprising conservations on some cytosolic tRNAs specific for alanine compared to other tRNA species, including tRNAs specific for glycine. First, besides the well-known G3oU70 base pair in the amino acid stem, there is the frequent occurrence of a second wobble pair at G30oU40, a pair generally observed as a Watson–Crick pair throughout phylogeny. Second, the tertiary pair R15/Y48 occurs as a purine–purine R15/A48 pair. Finally, the conserved T54/A58 pair maintaining the fold of the T-loop is observed as a purine–purine A54/A58 pair. The R15/A48 and A54/A58 pairs always occur together. The G30oU40 pair occurs alone or together with these other two pairs. The pairing variations are observed to a variable extent depending on phylogeny. Among eukaryotes, insects display all variations simultaneously, whereas mammals present either the G30oU40 pair or both R15/A48 and A54/A58. tRNAs with the anticodon 34A(I)GC36 are the most prone to display all those pair variations in mammals and insects. tRNAs with anticodon Y34GC36 have preferentially G30oU40 only. These unusual pairs are not observed in bacterial, nor archaeal, tRNAs, probably because of the avoidance of A34-containing anticodons in four-codon boxes. Among eukaryotes, these unusual pairing features were not observed in fungi and nematodes. These unusual structural features may affect, besides aminoacylation, transcription rates (e.g., 54/58) or ribosomal translocation (30/40).
Abstract Background Understanding the genetic basis of phenotype variations during domestication and breeding is of great interest. Epigenetics and epigenetic modification enzymes (EMEs) may play a role in phenotypic variations; however, no comprehensive study has been performed to date. Domesticated silkworm (Bombyx mori) may be utilized as a model in determining how EMEs influence domestication traits. Results We identified 44 EMEs in the genome of silkworm ( Bombyx mori ) using homology searching. Phylogenetic analysis showed that genes in a subfamily among different animals were well clustered, and the expression pattern of EMEs is constant among Bombyx mori , Drosophila melanogaster , and Mus musculus . These are most highly expressed in brain, early embryo, and internal genitalia. By gene-related selective sweeping, we identified five BmEMEs under artificial selection during the domestication and breeding of silkworm. Among these selected genes, BmSuv4–20 and BmDNMT2 harbor selective mutations in their upstream regions that alter transcription factor-binding sites. Furthermore, these two genes are expressed higher in the testis and ovary of domesticated silkworm compared to wild silkworms, and correlations between their expression pattern and meiosis of the sperm and ova were observed. Conclusions The domestication of silkworm has induced artificial selection on epigenetic modification markers that may have led to phenotypic changes during domestication. We present a novel perspective to understand the genetic basis underlying animal domestication and breeding.