Abstract Background The ovary is an important reproductive organ in mammals, and its development directly affects the sexual maturity and reproductive capacity of individuals. MicroRNAs (miRNAs) are recognized as regulators of reproductive physiological processes in various animals and have been shown to regulate ovarian development through typical targeting and translational repression. However, little is known about the regulatory role of miRNAs in ovarian tissue development during sexual maturity in goats. To comprehensively profile the different physiological stages of sexual maturation in goats, we performed small-RNA sequencing of ovarian tissue samples collected at four specific time points (1 day after birth (D1), 2 months old (M2), 4 months old (M4), and 6 months old (M6)). In addition, we used ELISAs to measure serum levels of reproductive hormones to study their temporal changes. Results The results showed that serum levels of gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, oestradiol, progesterone, oxytocin, and prolactin were lower in goats at the D1 stage than at the other three developmental stages ( P < 0.05). The secretion patterns of these seven hormones show a similar trend, with hormone levels reaching their peaks at 4 months of age. A total of 667 miRNAs were detected in 20 libraries, and 254 differentially expressed miRNAs and 3 groups of miRNA clusters that had unique expression patterns were identified (|log2-fold change|> 1, FDR < 0.05) in the 6 comparison groups. RT‒qPCR was employed to confirm that the expression pattern of the 15 selected miRNAs was consistent with the Illumina sequencing results. Gene ontology analyses revealed significant enrichment of GO terms such as cell proliferation regulation, epithelial cell development, and amino acid transport, as well as important signaling pathways including the MAPK signaling pathway, the PI3K-Akt signaling pathway, and the oestrogen signaling pathway. Further miRNA‒mRNA regulation network analysis revealed that 8 differentially expressed miRNAs (chi-miR-1343, chi-miR-328-3p, chi-miR-877-3p, chi-miR-296-3p, chi-miR-128-5p, chi-miR-331-3p, chi-miR-342-5p and chi-miR-34a) have important regulatory roles in ovarian cell proliferation, hormone secretion and metabolism-related biological processes. Conclusions Overall, our study investigated the changes in serum hormone and miRNA levels in the ovaries. These data provide a valuable resource for understanding the molecular regulatory mechanisms of miRNAs in ovarian tissue during the sexual maturity period in goats.
The mammary gland is a unique organ involved in lactation in dairy livestock, and its development and lactation ability are affected by both genetic and environmental factors. To explore the molecular regulatory mechanisms of these factors, this study used high-throughput sequencing technology and bioinformatics methods to systematically analyze the transcriptome of Laoshan dairy goat mammary gland tissues from different lactation stages. From three libraries, 36,336,892, 36,469,596, and 35,759,380, pure sequences were obtained, with 25,292, 23,665 and 27,220 expressed genes, respectively, resulting in a total of 14,892 nonredundant differentially expressed genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these genes were annotated to biological regulation, cellular processes, metabolic processes, cells, organelles, binding, catalytic activity and transcriptional activity, and so on. The genes were mainly involved in cellular processes, environmental information processes, genetic information processes, human diseases, metabolism, and organ systems. Finally, 20 genes related to mammary gland development and lactation were screened to construct a gene regulatory network. These findings support the involvement of the constructed network in the regulation of mammary gland development and lactation, and they not only lay the foundation to further investigate and screen the main genes or molecular genetic markers controlling the development of the mammary gland and lactation ability of dairy goats but also increase the in-depth understanding of the lactation physiology of dairy goats.
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (
Abstract Mixed tin‐lead perovskite solar cells (PSCs) have garnered much attention for their ideal bandgap and high environmental research value. However, poly (3,4‐ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS), widely used as a hole transport layer (HTL) for Sn‐Pb PSCs, results in unsatisfactory power conversion efficiency (PCE) and long‐term stability of PSCs due to its acidity and moisture absorption. A synergistic strategy by incorporating histidine (HIS) into the PEDOT: PSS HTL is applied to simultaneously regulate the nucleation and crystallization of perovskite (PVK). HIS neutralizes the acidity of PEDOT: PSS and enhances conductivity. Especially, the coordination of the C═N and ‐COO − functional groups in the HIS molecule with Sn 2+ and Pb 2+ induces vertical growth of PVK film, resulting in the release of residual surface stress. Additionally, this strategy also optimizes the energy level alignment between the perovskite layer and the HTL, which improves charge extraction and transport. With these cooperative effects, the PCE of Sn‐Pb PSCs reaches 21.46% (1 sun, AM1.5), maintaining excellent stability under a nitrogen atmosphere. Hence, the buried interface approach exhibits the potential for achieving high‐performance and stable Sn‐Pb PSCs.
To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.