Two major mechanisms have been proposed to explain the ability of introduced populations to colonize over large habitat gradients, despite significant population bottlenecks during introduction: (1) Broad environmental tolerance—successful invaders possess life history traits that confer superior colonizing ability and/or phenotypic plasticity, allowing acclimation to a wide range of habitats. (2) Local adaptation—successful invaders rapidly adapt to local selective pressures. However, even with bottlenecks, many introduced species exhibit surprisingly high levels of genetic variation and thus the potential for evolutionary increases in invasive traits and plasticity. Here we assess the invasive potential of Tamarix ramosissima, by examining the degree of genetic differentiation within and among populations from the latitudinal extremes of its introduced range. Using growth chamber experiments we examined ecologically important variation in seedlings, both in trait means and their reaction norms across temperature environments. Although we found no genetic variation for gas exchange traits, within or among populations, we did find significant genetic variation for growth traits, both in the trait means and in the degree of plasticity in these traits. Northern ecotypes invested more in roots relative to southern ecotypes but only under low temperatures. Both ecotypes increased shoot investment in warm temperatures. Increased root investment in cold temperatures by northern ecotypes may increase their first winter survival. Genetic differences in seedling root investment may contribute to the ability of this species to successfully tolerate and invade a broader latitudinal range. Our data support a model in which both plasticity and adaptive evolution can contribute to the invasive potential of introduced species.
Interdisciplinary syntheses are needed to scale up discovery of the environmental drivers and molecular basis of adaptation in nature. Here we integrated novel approaches using whole genome sequences, satellite remote sensing, and transgenic experiments to study natural loss-of-function alleles associated with drought histories in wild Arabidopsis thaliana. The genes we identified exhibit population genetic signatures of parallel molecular evolution, selection for loss-of-function, and shared associations with flowering time phenotypes in directions consistent with longstanding adaptive hypotheses seven times more often than expected by chance. We then confirmed predicted phenotypes experimentally in transgenic knockout lines. These findings reveal the importance of drought timing to explain the evolution of alternative drought tolerance strategies and further challenge popular assumptions about the adaptive value of genetic loss-of-function in nature. These results also motivate improved species-wide sequencing efforts to better identify loss-of-function variants and inspire new opportunities for engineering climate resilience in crops.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
The objective of this study was to determine if low stomatal conductance (g) increases growth, nitrate (NO3−) assimilation, and nitrogen (N) utilization at elevated CO2 concentration. Four Arabidopsis (Arabidopsis thaliana) near isogenic lines (NILs) differing in g were grown at ambient and elevated CO2 concentration under low and high NO3− supply as the sole source of N. Although g varied by 32% among NILs at elevated CO2, leaf intercellular CO2 concentration varied by only 4% and genotype had no effect on shoot NO3– concentration in any treatment. Low-gNILs showed the greatest CO2 growth increase under N limitation but had the lowest CO2 growth enhancement under N-sufficient conditions. NILs with the highest and lowest g had similar rates of shoot NO3– assimilation following N deprivation at elevated CO2 concentration. After 5 d of N deprivation, the lowest gNIL had 27% lower maximum carboxylation rate and 23% lower photosynthetic electron transport compared with the highest gNIL. These results suggest that increased growth of low-gNILs under N limitation most likely resulted from more conservative N investment in photosynthetic biochemistry rather than from low g.