An efficient glycosylation method to synthesize 2-deoxy-O-galactosides based on a Cu(II)-catalyzed reaction without additional ligand has been developed. The glycosylation was amenable to different protected glycal donors and a wide range of acceptors including alcohols, amino acids, sugars, and phenol, and proceeds with excellent yield and high α-selectivity under mild conditions. The reaction proceeds readily on a gram scale, and its versatility is exemplified in the synthesis of oligosaccharides.
A novel method for synthesizing 2,3-unsaturated glycosides has been developed using a metal-free catalytic system. This catalyst, sulfuric acid/4 Å molecular sieves can catalyze the reaction of 3,4,6-tri-O-acetyl-d-glucals and a wide range of alcohols at room temperature, affording 2,3-unsaturated glycosides in good α-selectivity (α/β > 6:1) via a Ferrier-type rearrangement.
Most glycoproteins and biological protein samples undergo both O- and N-glycosylation, making characterization of their structures very complicated and time-consuming. Nevertheless, to fully understand the biological functions of glycosylation, both the glycosylation forms need to be analyzed. Herein we report a versatile, convenient one-pot method in which O- and N-glycans are simultaneously released from glycoproteins and chromogenically labeled in situ and thus available for further characterization. In this procedure, glycoproteins are incubated with 1-phenyl-3-methyl-5-pyrazolone (PMP) in aqueous ammonium hydroxide, making O-glycans released from protein backbones by β-elimination and N-glycans liberated by alkaline hydrolysis. The released glycans are promptly derivatized with PMP in situ by Knoevenagel condensation and Michael addition, with peeling degradation almost completely prevented. The recovered mixture of O- and N-glycans as bis-PMP derivatives features strong ultraviolet (UV) absorbing ability and hydrophobicity, allowing for high-resolution chromatographic separation and high-sensitivity spectrometric detection. Using this technique, O- and N-glycans were simultaneously prepared from some model glycoproteins and complex biological samples, without significant peeling, desialylation, deacetylation, desulfation or other side-reactions, and then comprehensively analyzed by online HILIC-UV-ESI-MS/MS and RP-HPLC-UV-ESI-MS/MS, with which some novel O- and N-glycan structures were first found. This method provides a simple, versatile strategy for high-throughput glycomics analysis.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI