Abstract. The ocean surface mixed layer is a nearly universal feature of the world oceans. The depth of the mixed layer (MLD) influences the exchange of heat and gases between the atmosphere and the ocean and constitutes one of the major factors controlling ocean primary production as it affects the vertical distribution of biological and chemical components in near-surface waters. Direct observations of the MLD are traditionally made by means of conductivity, temperature and depth (CTD) casts. However, CTD instrument deployment limits the observation of temporal and spatial variability of the MLD. Here, we present an alternative method where acoustic mapping of the MLD is done remotely by means of commercially available ship-mounted echosounders. The method is shown to be highly accurate when the MLD is well defined and biological scattering does not dominate the acoustic returns. These prerequisites are often met in the open ocean and it is shown that the method is successful in 95 % of data collected in the central Arctic Ocean. The primary advantages of acoustically mapping the MLD over CTD measurements are: (1) considerably higher temporal and horizontal resolutions and (2) potentially larger spatial coverage.
Acoustic tracking of mixed layer depth -Supplementary MaterialFigure S1.Example of a CTD station without a well-defined mixed layer (blue category).a CTD profiles of temperature (blue) and salinity (red).b reflection coefficient profile derived from CTD data (see methods section for details).
Abstract. Mercury in different environmental compartments has been measured at Ny-Ålesund (78°54′ N, 11°53′ E) during an intensive campaign, 17 April to 14 May 2002. Time-resolved speciated determination of mercury in the atmosphere and snow was conducted at the Norwegian research station at the Zeppelin mountain, 474 m above the sea level, and at the Italian research facility Dirigibile Italia, 12 m above the sea level. Total Gaseous Mercury (TGM) was present in the range <0.1 to 2.2 ng m−3 during the campaign. Three mercury depletion events, identified as periods with decreased TGM concentrations, were observed. At the lower altitude, TGM concentrations following such events were found to exhibit both higher magnitude and larger variability in comparison to results from the Zeppelin station. Oxidised mercury species in air and fall-out with snow as well as mercury attached to particles were also measured and their concentrations were found to be anti-correlated with TGM in air. The strongest modulation was observed for total mercury concentration (Hg-tot) in snow (range 1.5–76.5 ng L−1). Solid evidence for photo-stimulated emissions of Hg0(g) from the snow pack in conjunction to depletion events were obtained from gradient measurements as well as from flux chamber measurements. Steep diurnal concentration variations of Hg0(aq) in surface seawater were also found to concur with changing solar radiation. The concentration of Hg0(aq) in seawater was found to be in the range 12.2–70.4 pg L−1, which corresponds to supersaturation. Hence, the seawater surface constituted a source emitting elemental mercury. The concentrations of the transient mercury forms RGM (Reactive Gaseous Mercury) and PM (Particulate Mercury) respectively and BrO column densities detected using a zenith and off-axis sky viewing DOAS instrument were very low except for a few individual samples during the major depletion event. An evaluation of trajectories for selected events and comparisons with BrO vertical column densities obtained by the GOME (Global Ozone Monitoring Experiment) instrument aboard the earth remote sensing satellite ESR-2 indicates that the air masses exhibiting low Hg0 concentrations originated from areas with high BrO densities. It was concluded that the observed depletion events at Ny-Ålesund were a results of transport from areas with high photochemical activity around the polar region.