Let X1,…,Xn be independent and identically distributed continuous nonnegative random variables and mn be the sample minimum. In the present paper, we propose an approach, which maximizes the value E(∑i=knmin{Xi,…,Xn}) and makes it greater than E(∑i=1nmi|X1=x1,…,Xk−1=xk−1). We further apply this approach to the standard uniform and exponential distributions and for finding the corresponding values x1,…,xk−1 solve proper algebraic equations by numerical methods.
We begin to study different limit theorems for order statistics. In this chapter we consider the asymptotic distributions for the so-called middle and intermediate order statistics.
Previous article Next article RecordsV. B. NevzorovV. B. Nevzorovhttps://doi.org/10.1137/1132032PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] M. Ahsanullah, Record values and the exponential distribution, Ann. Inst. Statist. Math., 30 (1978), 429–433 80h:62010 0444.62016 CrossrefGoogle Scholar[2] M. Ahsanullah, Characterization of the exponential distribution by record values, Sankhyā Ser. B, 41 (1979), 116–121 82f:62030 0517.62018 Google Scholar[3] M. Ahsanullah, Linear prediction of record values for the two-parameter exponential distribution, Ann. Inst. Statist. Math., 32 (1980), 363–368 82m:62105 0456.62026 CrossrefGoogle Scholar[4] M. Ahsanullah, On a characterization of the exponential distribution by weak homoscedasticity of record values, Biometrical J., 23 (1981), 715–717 84i:62016 0473.62015 CrossrefGoogle Scholar[5] Mohammad Ahsanullah, Record values of exponentially distributed random variables, Statist. Hefte (N.F.), 22 (1981), 121–127 83c:62016 0471.62017 CrossrefGoogle Scholar[6] M. Ahsanullah and , B. Holland, Record values and the geometric distribution, Statist. Hefte, 25 (1984), 319–327 861 793 0576.62023 CrossrefGoogle Scholar[7] R. Ballerini and , S. I. Resnick, Records from improving populations, J. Appl. Probab., 22 (1985), 487–502 86m:60098 0584.62149 CrossrefGoogle Scholar[8] Ole Barndorff-Nielsen, On the limit behaviour of extreme order statistics, Ann. Math. Statist., 34 (1963), 992–1002 27:875 0119.15004 CrossrefGoogle Scholar[9] D. E. Barton and , C. L. Mallows, The randomization bases of the problem of the amalgamation of weighted means, J. Roy. Statist. Soc. Ser. B, 23 (1961), 423–433 24:A2407 0119.35501 Google Scholar[10] D. E. Barton and , C. L. Mallows, Some aspects of the random sequence, Ann. Math. Statist., 36 (1965), 236–260 31:2745 0128.13001 CrossrefGoogle Scholar[11] R. M. Biondini and , M. M. Siddiqui, Record values in Markov sequencesStatistical inference and related topics (Proc. Summer Res. Inst. Statist. Inference for Stochastic Prosesses, Indiana Univ., Bloomington, Ind., 1974, Vol. 2; dedicated to Z. W. Birnbaum), Academic Press, New York, 1975, 291–352 52:12081 0319.60041 CrossrefGoogle Scholar[12] K. N. Chandler, The distribution and frequency of record values, J. Roy. Statist. Soc. Ser. B., 14 (1952), 220–228 14,778a 0047.38302 Google Scholar[13] A. C. Dallas, Record values and the exponential distribution, J. Appl. Probab., 18 (1981), 949–951 83k:62015 0472.60017 CrossrefGoogle Scholar[14] A. C. Dallas, Some results on record values from the exponential and Weibull law, Acta Math. Acad. Sci. Hungar., 40 (1982), 307–311 84e:62081 0516.62024 CrossrefGoogle Scholar[15] Laurens de Haan, Extremal processesStatistical extremes and applications (Vimeiro, 1983), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 131, Reidel, Dordrecht, 1984, 297–309 86j:60098 0554.60052 CrossrefGoogle Scholar[16] Laurens de Haan and , Sidney I. Resnick, Almost sure limit points of record values, J. Appl. Probability, 10 (1973), 528–542 51:9171 0269.60026 CrossrefGoogle Scholar[17] P. Deheuvels, Sur la convergence de sommes de minimums de variables aléatoires, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A309–A312 48:5156a 0249.60010 Google Scholar[18] Paul Deheuvels, Majoration et minoration presque sûre optimale des éléments de la statistique ordonnée d'un échantillon croissant de variables aléatoires indépendantes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 56 (1974), 707–719 52:15625 0321.60027 Google Scholar[19] Paul Deheuvels, The strong approximation of extremal processes, Z. Wahrsch. Verw. Gebiete, 58 (1981), 1–6 82k:60065 0464.60029 CrossrefGoogle Scholar[20] Paul Deheuvels, A construction of extremal processesProbability and statistical inference (Bad Tatzmannsdorf, 1981), Reidel, Dordrecht, 1982, 53–57, Proceedings of the 2nd Pannonian Symp. 84c:60112 0484.60049 CrossrefGoogle Scholar[21] P. Deheuvels, Spacings, record times and extremal processesExchangeability in probability and statistics (Rome, 1981), North-Holland, Amsterdam, 1982, 233–243 84e:62082 0493.60077 Google Scholar[22] Paul Deheuvels, The complete characterization of the upper and lower class of the record and inter-record times of an i.i.d. sequence, Z. Wahrsch. Verw. Gebiete, 62 (1983), 1–6 84f:60033 0488.60030 CrossrefGoogle Scholar[23] Paul Deheuvels, The strong approximation of extremal processes. II, Z. Wahrsch. Verw. Gebiete, 62 (1983), 7–15 84c:60050 0488.60031 CrossrefGoogle Scholar[24] P. Deheuvels, On record times associated with kth extremes, Proceedings of the 3rd Pannonian Symp. on Mathematical Statistics (Visegrad, Hungary, September 13–18, 1982), Akadémiai Kiadó, Budapest, 1984, 43–51 0537.60014 Google Scholar[25] P. Deheuvels, Strong approximation in extreme value theory and applicationsLimit theorems in probability and statistics, Vol. I (Veszprém, Hungary, 1982), Colloq. Math. Soc. János Bolyai, Vol. 36, North-Holland, Amsterdam, 1984, 369–404, Elseveier 87g:60031 0568.60056 Google Scholar[26] Paul Deheuvels, The characterization of distributions by order statistics and record values—a unified approach, J. Appl. Probab., 21 (1984), 326–334 85j:62009 0538.62008 CrossrefGoogle Scholar[27] Joseph G. Deken, Scheduled maxima sequences, J. Appl. Probab., 15 (1978), 543–551 58:18885 0388.60029 CrossrefGoogle Scholar[28] J. R. Dunsmore, The future occurrence of records, Ann. Inst. Statist. Math., 35 (1983), 267–277 85c:62086 0522.62027 CrossrefGoogle Scholar[29] W. Dziubdziela, Limit distributions of extreme order statistics, Mat. Stos. (3), 9 (1977), 45–71, (In Polish.) 58:2981 0441.62018 Google Scholar[30] W. Dziubdziela and , B. Kopociński, Limiting properties of the k-th record values, Zastos. Mat., 15 (1976), 187–190 54:8800 0337.60023 Google Scholar[31] Meyer Dwass, Extremal processes, Ann. Math. Statist, 35 (1964), 1718–1725 31:1703 0171.38801 CrossrefGoogle Scholar[32] Meyer Dwass, Extremal processes. II, Illinois J. Math., 10 (1966), 381–391 33:1877 0304.60020 CrossrefGoogle Scholar[33] F. G. Foster and , A. Stuart, Distribution-free tests in time-series based on the breaking of records, J. Roy. Statist. Soc. Ser. B., 16 (1954), 1–13; discussion 13–22 16,385i 0055.37804 Google Scholar[34] F. G. Foster and , D. Teichroew, A sampling experiment on the powers of the records tests for trend in a time series, J. Roy. Statist. Soc. Ser. B., 17 (1955), 115–121 17,382b 0066.12803 Google Scholar[35] W. Freudenberg and , D. Szynal, Limit laws for a random number of record values, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24 (1976), 193–199 53:11702 0328.60017 Google Scholar[36] W. Freudenberg and , D. Szynal, On domains of attraction of record value distributions, Colloq. Math., 38 (1977), 129–139 57:1607 0374.60043 CrossrefGoogle Scholar[37] L. Gajek, Limiting properties of difference between the successive kth record values, Probab. Math. Statist., 5 (1985), 221–224 87e:60046 0614.60020 Google Scholar[38] Janos Galambos and , Samuel Kotz, Characterizations of probability distributions, Lecture Notes in Mathematics, Vol. 675, Springer, Berlin, 1978viii+169 80a:62022 0381.62011 CrossrefGoogle Scholar[39] J. Galambos and , E. Seneta, Record times, Proc. Amer. Math. Soc., 50 (1975), 383–387 51:4353 0276.60028 CrossrefGoogle Scholar[40] Donald P. Gaver, Random record models, J. Appl. Probability, 13 (1976), 538–547 54:8841 0399.60083 CrossrefGoogle Scholar[41] Donald P. Gaver and , Patricia A. Jacobs, Non-homogeneously paced random records and associated extremal processes, J. Appl. Probab., 15 (1978), 552–559 57:17894 0394.60076 CrossrefGoogle Scholar[42] Ned Glick, Breaking records and breaking boards, Amer. Math. Monthly, 85 (1978), 2–26 57:1711 0395.62040 CrossrefGoogle Scholar[43] B. V. Gnedenko, Sur la distribution limite du terme maximum d'une série aléatoire, Ann. of Math. (2), 44 (1943), 423–453 5,41b CrossrefGoogle Scholar[44] C. M. Goldie, Differences and quotients of record values, Stochastic Process. Appl., 12 (1982), 162– Google Scholar[45] Zofia Grudzień, On distributions and moments of ith record statistic with random index, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 33 (1979), 89–102 (1981) 84d:62097 0462.62017 Google Scholar[46] E. J. Gumbel, Ann. Inst. Statist. Math., Ann. Math. Statistics, 12 (1961), 249–256 CrossrefGoogle Scholar[47] Ramesh C. Gupta, Relationships between order statistics and record values and some characterization results, J. Appl. Probab., 21 (1984), 425–430 85m:62025 0541.60012 CrossrefGoogle Scholar[48] Gary Lee Guthrie and , Paul T. Holmes, On record and inter-record times for a sequence of random variables defined on a Markov chain, Adv. in Appl. Probab., 7 (1975), 195–214 52:15613 0305.60013 CrossrefGoogle Scholar[49] Dariush Haghighi-Talab and , Christopher Wright, On the distribution of records in a finite sequence of observations, with an application to a road traffic problem, J. Appl. Probability, 10 (1973), 556–571 50:5983 0281.60009 CrossrefGoogle Scholar[50] P. T. Holmes and , W. Strawderman, A note on the waiting times between record observations, J. Appl. Probability, 6 (1969), 711–714 41:2798 0185.45401 CrossrefGoogle Scholar[51] Z. Ignatov, Point processes generated by order statistics and their applicationsPoint processes and queuing problems (Colloq., Keszthely, Hungary, 1978), Colloq. Math. Soc. János Bolyai, Vol. 24, North-Holland, Amsterdam, 1981, 109–116, Elseveier 82h:60101 0458.60049 Google Scholar[52] S. N. U. A. Kirmani and , M. J. Beg, On characterization of distributions by expected records, Sankhyā Ser. A, 46 (1984), 463–465 86j:62034 0561.62011 Google Scholar[53] S. Kleinman, A mathematical model for platoon formation, Transportation Sci., 6 (1972), 202–204 CrossrefGoogle Scholar[54] R. M. Korwar, On characterizing distributions for which the second record value has a linear regression on the first, Sankhyā Ser. B, 46 (1984), 108–109 86e:62020 Google Scholar[55] John Lamperti, On extreme order statistics, Ann. Math. Statist, 35 (1964), 1726–1737 30:609 0132.39502 CrossrefGoogle Scholar[56] N. R. Mohan and , S. S. Nayak, A characterization based on the equidistribution of the first two spacings of record values, Z. Wahrsch. Verw. Gebiete, 60 (1982), 219–221 83m:62027 0468.60023 CrossrefGoogle Scholar[57] H. N. Nagaraja, On a characterization based on record values, Austral. J. Statist., 19 (1977), 70–73 56:16867 0423.62013 CrossrefGoogle Scholar[58] H. N. Nagaraja, On the expected values of record values, Austral. J. Statist., 20 (1978), 176–182 82b:62017 0407.62025 CrossrefGoogle Scholar[59] H. N. Nagaraja, Record values and extreme value distributions, J. Appl. Probab., 19 (1982), 233–239 83b:60019 0482.60028 CrossrefGoogle Scholar[60] S. S. Nayak, Characterizations based on record values, J. Indian Statist. Assoc., 19 (1981), 123–127 84j:62021 Google Scholar[61] Marcel F. Neuts, Waitingtimes between record observations, J. Appl. Probability, 4 (1967), 206–208 34:8461 0152.16902 CrossrefGoogle Scholar[62] G. F. Newell, A theory of platoon formation in tunnel traffic, Operations Res., 7 (1959), 589–598 21:7801 CrossrefGoogle Scholar[63] D. Pfeifer, Asymptotic expansions for the mean and variance of logarithmic inter-record times, Math. Oper. Res., 39 (1981), 113–121 0505.60036 Google Scholar[64] Dietmar Pfeifer, Characterizations of exponential distributions by independent nonstationary record increments, J. Appl. Probab., 19 (1982), 127–135 84j:62022a 0484.60013 CrossrefGoogle Scholar[65] D. Pfeifer, A note on moments of certain record statistics, Z. Wahrsch. Verw. Gebiete, 66 (1984), 293–296 86b:60047 CrossrefGoogle Scholar[66] Dietmar Pfeifer, On a relationship between record values and Ross's model of algorithm efficiency, Adv. in Appl. Probab., 17 (1985), 470–471 86h:90058 0568.60079 CrossrefGoogle Scholar[67] J. Pickands, The two-dimensional Poisson process and extremal processes, J. Appl. Probability, 8 (1971), 745–756 45:4519 0242.62024 CrossrefGoogle Scholar[68] A. Rényi, On the extreme elements of observations, Selected Papers of Alfred Rényi, Vol. 3, Adakémiai Kiadó, 1976, 50–65, (English translation of the article: Egy megfigyeléssorozat kiemelkedö elemeiröl, Mag. Tud. Acad. III Oszt. Kozl, 12 (1962), pp. 105–121) Google Scholar[69] Alfréd Rényi, Théorie des éléments saillants d'une suite d'observations, Ann. Fac. Sci. Univ. Clermont-Ferrand No., 8 (1962), 7–13 44:3376 Google Scholar[70] Alfréd Rényi, Théorie des éléments saillants d'une suite d'observations, Colloquium on Combinatorial Methods in Probability Theory (August 1–10, 1962), Math. Inst., Aarhus Univ., Aarhus, 1962, 104–117 0139.35303 Google Scholar[71] Sidney I. Resnick, Record values and maxima, Ann. Probability, 1 (1973), 650–662 50:8657 0261.60024 CrossrefGoogle Scholar[72] Sidney I. Resnick, Limit laws for record values, Stochastic Processes Appl., 1 (1973), 67–82 10.1016/0304-4149(73)90033-1 50:14895 0253.60028 CrossrefGoogle Scholar[73] Sidney I. Resnick, Extremal processes and record value times, J. Appl. Probability, 10 (1973), 864–868 50:14894 0284.60025 CrossrefGoogle Scholar[74] Sidney I. Resnick, Inverses of extremal processes, Advances in Appl. Probability, 6 (1974), 392–406 52:9420 0285.60028 CrossrefGoogle Scholar[75] Sidney I. Resnick, Weak convergence to extremal processes, Ann. Probability, 3 (1975), 951–960 55:1417 0322.60024 CrossrefGoogle Scholar[76] Sidney I. Resnick and , Michael Rubinovitch, The structure of extremal processes, Advances in Appl. Probability, 5 (1973), 287–307 50:3359 0262.60062 CrossrefGoogle Scholar[77] R. W. Shorrock, On record values and record times, J. Appl. Probability, 9 (1972), 316–326 50:3361 0239.60049 CrossrefGoogle Scholar[78] R. W. Shorrock, A limit theorem for inter-record times, J. Appl. Probability, 9 (1972), 219–223 45:4487 0232.60022 CrossrefGoogle Scholar[79] R. W. Shorrock, Record values and inter-record times, J. Appl. Probability, 10 (1973), 543–555 50:8658 0268.60075 CrossrefGoogle Scholar[80] R. W. Shorrock, On discrete time extremal processes, Advances in Appl. Probability, 6 (1974), 580–592 50:1312 0289.60045 CrossrefGoogle Scholar[81] R. W. Shorrock, Extremal processes and random measures, J. Appl. Probability, 12 (1975), 316–323 55:1457 0351.60078 CrossrefGoogle Scholar[82] M. M. Siddiqui and , Ronald W. Biondini, The joint distribution of record values and inter-record times, Ann. Probability, 3 (1975), 1012–1013 52:15616 0323.60023 CrossrefGoogle Scholar[83] R. C. Srivastava, Some characterizations of the exponential distribution based on record values, Bull. Inst. Math. Statist., 7 (1978), 283– Google Scholar[84] R. C. Srivastava, Two characterizations of the geometric distribution by record values, Sankhyā Ser. B, 40 (1978/79), 276–278 82j:62008 0434.62016 Google Scholar[85] R. C. Srivastava, Some characterizations of the exponential distribution based on record valuesStatistical distributions in scientific work, Vol. 4 (Trieste, 1980), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., Vol. 79, Reidel, Dordrecht, 1981, 411–418 83i:62042 0474.62017 CrossrefGoogle Scholar[86] R. C. Srivastava, On some characterizations of the geometric distributionStatistical distributions in scientific work, Vol. 4 (Trieste, 1980), NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., Vol. 79, Reidel, Dordrecht, 1981, 349–355 83i:62041 0474.62016 CrossrefGoogle Scholar[87] A. J. Stam, Independent Poisson processes generated by record values and inter-record times, Stochastic Process. Appl., 19 (1985), 315–325 10.1016/0304-4149(85)90033-X 87j:60074 0578.60048 CrossrefGoogle Scholar[88] William E. Strawderman and , Paul T. Holmes, On the law of the iterated logarithm for inter-record times, J. Appl. Probability, 7 (1970), 432–439 41:6282 0219.60023 CrossrefGoogle Scholar[89] Alan Stuart, Asymptotic relative efficiencies of distribution-free tests of randomness against normal alternatives, J. Amer. Statist. Assoc., 49 (1954), 147–157 15,728a 0055.13302 CrossrefGoogle Scholar[90] Alan Stuart, The efficiencies of tests of randomness against normal regression, J. Amer. Statist. Assoc., 51 (1956), 285–287 17,1221j 0071.13402 CrossrefGoogle Scholar[91] Alan Stuart, The efficiency of the records test for trend in normal regression, J. Roy. Statist. Soc. Ser. B., 19 (1957), 149–153 19,783g 0090.35904 Google Scholar[92] Kazuyuki Suzuki, Nonparametric estimation of lifetime distributions from a record of failures and follow-ups, J. Amer. Statist. Assoc., 80 (1985), 68–72 87h:62078 0561.62084 CrossrefGoogle Scholar[93] C. Taillie, A note on Srivastava's characterization of the exponential distribution based on record valuesStatistical Distributions in Scientific Work, Vol. 4, Beldessari, Vol. 79, D. Reidel, Dordrecht, 1981, 417–418 0474.62018 CrossrefGoogle Scholar[94] Mahabanoo N. Tata, On outstanding values in a sequence of random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 12 (1969), 9–20 40:918 0188.23902 CrossrefGoogle Scholar[95] J. Tiago de Oliveira, Extremal processes: Definition and properties, Publ. Inst. Statist. Univ. Paris, 17 (1968), 25–36 47:5949 0176.48705 Google Scholar[96] Peter Tryfos and , Russell Blackmore, Forecasting records, J. Amer. Statist. Assoc., 80 (1985), 46–50 86f:62079 CrossrefGoogle Scholar[97] Wim Vervaat, Limit theorems for records from discrete distributions, Stochastic Processes Appl., 1 (1973), 317–334 10.1016/0304-4149(73)90015-X 50:14898 0273.60014 CrossrefGoogle Scholar[98] Mark Westcott, A note on record times, J. Appl. Probability, 14 (1977), 637–639 56:13313 0383.60028 CrossrefGoogle Scholar[99] M. Westcott, The random record model, Proc. Roy. Soc. London Ser. A, 356 (1977), 529–547 58:7837 0369.60062 CrossrefGoogle Scholar[100] Mark Westcott, On the tail behaviour of record-time distributions in a random record process, Ann. Probab., 7 (1979), 868–873 80j:60037 0416.60061 CrossrefGoogle Scholar[101] M. Westcott, Characterizing the exponential distribution, J. Appl. Probab., 18 (1981), 568–, (Letter to editor) CrossrefGoogle Scholar[102] S. S. Wilks, Recurrence of extreme observations, J. Austral. Math. Soc., 1 (1959/1961), 106–112 21:4507 0092.35001 CrossrefGoogle Scholar[103] David Williams, On Rényi's "record" problem and Engel's series, Bull. London Math. Soc., 5 (1973), 235–237 48:12636 0292.60047 CrossrefGoogle Scholar[104] C. C. Wright, Some characteristics of traffic leaving a signalized intersection, Transportation Sci., 4 (1970), 331–346 CrossrefGoogle Scholar[105] M. C. K. Yang, On the distribution of the inter-record times in an increasing population, J. Appl. Probability, 12 (1975), 148–154 52:6929 0306.60068 CrossrefGoogle Scholar[106] M. Dwass, Extremal processes. III, Discussion Paper 41, Northwestern Univ., Chicago, 1973 Google Scholar[107] C. M. Goldie, Masters Thesis, On Records and Related Topics in Probability Theory, Thesis, Univ. Sussex, School Math., Phys. Sci., Brighton, 1983 Google Scholar[108] Charles M. Goldie and , L. C. G. Rogers, The k-record processes are i.i.d, Z. Wahrsch. Verw. Gebiete, 67 (1984), 197–211 86c:60075 0535.60037 CrossrefGoogle Scholar[109] Z. Grudzień, Masters Thesis, Characterizations of distributions by record statistics and also the distributions and moments of order and record statistics, from the problem of lottery numbers, Doctoral Dissertation, UMCS, Lublin, 1983, (In Polish.) Google Scholar[110] D. Pfeifer, Ph.D. Thesis, Record Values in Einem Stochastischen Modell mit nicht-colentischen Verteilungen, Techn., Univ. Aachen, 1979 Google Scholar[111] S. M. Ross, A Simple Heuristic Approach to Simplex Efficiency, Rep., Oper. Res. Center, Univ. California Press, Berkeley, 1981 Google Scholar[112] R. L. Smith and , J. Miller, Predicting Records, 1984, Preprint, Imperial College, London Google Scholar[113] A. J. Stam, The Process of rth Order Records, Report, T.W.154, Math. Inst., Rijksuniversitet, Groningen, 1982 Google Scholar[114] W. Vervaat, Success epochs in Bernoulli trials (with applications in number theory), Mathematisch Centrum, Amsterdam, 1972iii+166 pp. (loose errata) 48:7331 0267.60003 Google Scholar[115] W. Vervaat, Limit Theorem for Partial Maximal and Records, Tech. Rep., Univ. Washington, Dept. Math., Seattle, 1973 Google Scholar[116] Nijmegen, On Records, Maxima and a Stochastic Difference Equation, Rep., 7702, Math. Inst. Katholieke Univ., 1977 Google Scholar[117] T. A. Azlarov and , N. A. Volodin, Characterization Problems Associated with the Exponential Distribution, Fan, Tashkent, 1982, (In Russian.) Google Scholar[118] V. A. Balabekyan and , V. B. Nevzorov, The number of records in an array of nonidentically distributed random variablesRings and modules. Limit theorems of probability theory, No. 1 (Russian), Leningrad. Univ., Leningrad, 1986, 147–153, (In Russian.) 88f:60037 Google Scholar[119] Janos Galambos, The asymptotic theory of extreme order statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978xiv+352 80b:60040 Google Scholar[120] Yu. I. Gladysheva and , A. I. Sokhanenko, Invariance principle for a sum of minima, Siberian Math. J., 26 (1985), 677–684 0592.60025 CrossrefGoogle Scholar[121] E. J. Gumbel, Statistics of extremes, Columbia University Press, New York, 1958xx+375 20:2826 CrossrefGoogle Scholar[122] H. A. David, Order statistics, John Wiley & Sons Inc., New York, 1970xi+272 44:3440 0223.62057 Google Scholar[123] S. Karlin, A First Course in Stochastic Processes, Academic Press, New York, 1975, (with Howard M. Taylor) 0315.60016 Google Scholar[124] M. G. Kendall and , Alan Stuart, The advanced theory of statistics. Vol. 3, Hafner Press [Macmillan Publishing Co., Inc.], New York, 1976x+585, Design and Analysis of Time Series, 3rd ed. 57:7819 0361.62001 Google Scholar[125] V. B. Nevzorov, Limit theorems for order statistics and record values, Summary of Reports of III Internat'l Vil'nius Conf. on Probability Theory and Mathematical Statistics, Vol. 2, Inst. Mat. i Kib. Akad. Nauk LitSSR, Vil'nius, 1981, 86–87, (In Russian.) Google Scholar[126] V. B. Nevzorov, Record times and the case of non-identically distributed random variables, Theory Probab. Appl., 29 (1984), 845–846 Google Scholar[127] V. B. Nevzorov, On record and inter-record times for a sequence of non-identically distributed variables, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 142 (1985), 109–118, (In Russian.) 0565.62032 Google Scholar[128] V. B. Nevzorov, kth record times and their generalizations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 153 (1986), 115–121, 175, 180 88b:60061 0602.60032 Google Scholar[129] V. B. Nevzorov, The number of records in a sequence of nonidentically distributed variablesProbability distributions and mathematical statistics (Russian) (Fergana, 1983), "Fan", Tashkent, 1986, 373–388, 497 89f:60027 Google Scholar[130] V. B. Nevzorov, Record times and their generalizations, Theory Probab. Appl., 31 (1986), 554–556 Google Scholar[131] N. V. Smirnov, Limit distribution laws for order statistics, Trudy Inst. Mat. Steklov Akad. Nauk. SSSR, 25 (1949), 5–59, (In Russian.) Google Scholar[132] William Feller, An introduction to probability theory and its applications. Vol. II. , Second edition, John Wiley & Sons Inc., New York, 1971xxiv+669 42:5292 0219.60003 Google Scholar[133] A. M. Vershik and , A. A. Schmidt, Limit measures arising in the asymptotic theory of symmetric groups. I, II, Theory Probab. Appl., 22 (1977), 70–85, 23 (1978), pp. 36–49 10.1137/1122006 0375.60007 LinkGoogle Scholar[134] Ts. Ignatov, On a constant arising in the asymptotic theory of symmetric groups, and on Poisson-Direchlet measures, Theory Probab. Appl., 27 (1982), 136–147 10.1137/1127012 0559.60046 LinkGoogle Scholar[135] A. L. Yakymiv, Asymptotic properties of the times the states change in a random record process, Theory Probab. Appl., 31 (1986), 508–512 10.1137/1131068 0623.60062 LinkGoogle Scholar[136] R. Ballerini and , S. I. Resnick, Records in the Presence of a Linear Trend, Tech. Rep., Univ. Florida, Gainesville, 1988 Google Scholar[137] R. Ballerini and , S. I. Resnick, Embedding Sequences Successive of Maxima in Extremal Processes with Applications, Tech. Rep., Univ. Florida, Gainesville, 1986 Google Scholar[138] L. De Haan and , E. Verkade, On Extreme-Value Theory in the Presence of a Trend, Tech. Rep., Erasmus Univ., Rotterdam, 1985 Google Scholar[139] Paul Deheuvels, L'encadrement asymptotique des éléments de la série d'Engel d'un nombre réel, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), 21–24 83h:10095 0488.10050 Google Scholar[140] Paul Deheuvels, A construction of extremal processesProbability and statistical inference (Bad Tatzmannsdorf, 1981), Reidel, Dordrecht, 1982, 53–57 84c:60112 0484.60049 CrossrefGoogle Scholar[141] Paul Deheuvels, Strong approximations of records and record timesStatistical extremes and applications (Vimeiro, 1983), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 131, Reidel, Dordrecht, 1984, 491–496 86h:60068 0563.60037 CrossrefGoogle Scholar[142] Paul Deheuvels, Strong Approximations of Records and Record Times by Wiener Processes, 1986, Preprint No. 43, Univ. P. et M. Curie, Lab. Stat. Théor. Appl., Paris Google Scholar[143] J. Deken, Ph.D. Thesis, On records: Scheduled maxima sequences and largest common subsequences, Dept. Stat., Stanford Univ., 1976 Google Scholar[144] Meyer Dwass, Extremal processes. III, Bull. Inst. Math. Acad. Sinica, 2 (1974), 255–265 50:11466 0326.60035 Google Scholar[145] R. Engelen and , P. Tommassen, A New Proof of Ignatov's Theorem, Report, Katholieke Univ., Nijmegen, 1984 Google Scholar[146] C. M. Goldie and , S. I. Resnick, Records in a Partially Ordered Set, Tech. Rep., Univ. Sussex, Brighton, 1986 Google Scholar[147] C. M. Goldie, Differences between Upper Record Values, 1986, Preprint, Univ. Sussex, Brighton Google Scholar[148] Charles M. Goldie and , L. C. G. Rogers, The k-record processes are i.i.d, Z. Wahrsch. Verw. Gebiete, 67 (1984), 197–211 86c:60075 0535.60037 CrossrefGoogle Scholar[149] Z. Grudzien and , D. Dszynal, On the expected values of kth record values and associated characteristics of distributions, Proceedings of the 4th Pannonian Symp. on Mathematical Statistics, Akademiai Kiado, Budapest, 1985, 119–127 0586.62071 Google Scholar[150] Zvetan Ignatov, Ein von der Variationsreihe erzeugter Poissonscher Punktprozeß, Annuaire Univ. Sofia Fac. Math. Méc., 71 (1976/77), 79–94 (1986) 87m:60112 0619.60052 Google Scholar[151] Maria Iwinska, On the characterization of the exponential distribution by record values, Fasc. Math., (1985), 159–164 87f:62024 0586.60015 Google Scholar[152] M. R. Leadbetter, , Georg Lindgren and , Holger Rootzén, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York, 1983xii+336, Heidelberg 84h:60050 0518.60021 CrossrefGoogle Scholar[153] S. S. Nayak, Almost sure limit points of and the number of boundary crossings related to SLLN and LIL for record times, inter-record times and the number of record values, Stochastic Process. Appl., 17 (1984), 167–176 10.1016/0304-4149(84)90319-3 85h:60043 0536.60039 CrossrefGoogle Scholar[154] V. B. Nevzorov, Generalizations of record times and values, Summaries of Reports of the 1st World Congress of the Bernoulli Society of Mathematical Statistics and Probability Theory, Vol. 1, Nauka, Moscow, 334– Google Scholar[155] D. Pfeifer, On Mean and Variance of Logarithmic Record Times, 1985, Preprint, Inst. Statist. Wirtschaftsmath. RWTH, Aachen Google Scholar[156] D. Pfeifer, Limit laws for inter-record times from nonhomogeneous record values, J. Organiz. Behav. Statist., 1 (1984), 69–74 Google Scholar[157] Dietmar Pfeifer, On the rate of convergence for some strong approximation theorems in extremal statistics, Statist. Decisions, (1985), 99–103 87i:60037 0575.60035 Google Scholar[158] D. Pfeifer, On Joint Strong Approximation Theorem for Record and Inter-record Times, Tech. Rep., 120, Center Stoch. Proc., Univ. N. Carolina, Chapel Hill, 1985 Google Scholar[159] D. Pfeifer, Extremal Processes, Record Times Strong Approximation, Tech. Rep., 131, Center Stoch. Proc., Univ. N. Carolina, Chapel Hill, 1985 Google Scholar[160] S. I. Resnick, Extremal processesEncyclopedia of Statistical Sciences, John Wiley, New York, 1983, 600–605 Google Scholar[161] R. L. Smith and , J. E. Miller, A non-Gaussian state space model and application to prediction of records, J. Roy. Statist. Soc. Ser. B, 48 (1986), 79–88 87h:62059 0593.62099 Google Scholar[162] R. L. Smith, Forecasting Methods by Maximum Likelihood, Tech. Rep., 52, Univ. Surrey, Dept. Math., Guilford, 1986 Google Scholar[163] A. J. Stam, Limiting Numbers of Inter-record Times, 1981, Preprint, Math. Inst. Rijksunivers., Groningen Google Scholar[164] A. J. Stam, Independent Poisson processes generated by record values and inter-record times, Stochastic Process. Appl., 19 (1985), 315–325 10.1016/0304-4149(85)90033-X 87j:60074 0578.60048 CrossrefGoogle Scholar[165] Jozef L. Teugels, On successive record values in a sequence of independent identically distributed random variablesStatistical extremes and applications (Vimeiro, 1983), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 131, Reidel, Dordrecht, 1984, 639–650 86g:62161 0562.62090 CrossrefGoogle Scholar[166] W. Vervaat, Ignatov's theorem: a new and short proof, Bull. Inst. Math. Statist., 15 (1985), 194–236 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Inference on generalized inverted exponential distribution based on record values and inter-record times2 July 2022 | Afrika Matematika, Vol. 33, No. 3 Cross R