Nna1/CCP1 is generally known as a causative gene for a spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd). There is enough evidence that the cytosolic function of the zinc carboxypeptidase (CP) domain at the C-terminus of the Nna1 protein is associated with cell death. On the other hand, this molecule's two nuclear localization signals (NLSs) suggest some other functions exist. We generated exon 3-deficient mice (Nna1N KO), which encode a portion of the N-terminal NLS. Despite the frameshift occurring in these mice, there was an expression of the Nna1 protein lacking the N-terminal side. Surprisingly, the pcd phenotype did not occur in the Nna1N KO mouse. Behavioral analysis revealed that they were less anxious when assessed by the elevated plus maze and the light/dark box tests compared to the control. Furthermore, they showed impairments in context-dependent and sound stimulus-dependent learning. Biochemical analysis of Nna1N KO mice revealed a reduced level of the AMPA-type glutamine receptor GluA2 in the hippocampal synaptosomal fraction. In addition, the motor protein kinesin-1, which transports GluA2 to dendrites, was also decreased. These results indicate that Nna1 is also involved in emotion and memory learning, presumably through the trafficking and expression of synaptic signaling molecules, besides a known role in cell survival.
CD8 T cells play a critical role in protection against viral infections. During effector differentiation, CD8 T cells dramatically change chromatin structure and cellular metabolism, but how energy production increases in response to these epigenetic changes is unknown. We found that loss of basic leucine zipper transcription factor, ATF-like (BATF) inhibited effector CD8 T-cell differentiation. At the late effector stage, BATF was induced by IL-12 and required for IL-12–mediated histone acetylation and survival of effector T cells. BATF, together with c-Jun, transcriptionally inhibited expression of the nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase Sirt1, resulting in increased histone acetylation of the T-bet locus and increased cellular NAD + , which increased ATP production. In turn, high levels of T-bet expression and ATP production promoted effector differentiation and cell survival. These results suggest that BATF promotes effector CD8 T-cell differentiation by regulating both epigenetic remodeling and energy metabolism through Sirt1 expression.
IL-1 receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic intellectual disability and is associated with autism. IL1RAPL1 mediates excitatory synapse formation through trans-synaptic interaction with PTPδ. Here, we showed that the spine density of cortical neurons was significantly reduced in IL1RAPL1 knockout mice. The spatial reference and working memories and remote fear memory were mildly impaired in IL1RAPL1 knockout mice. Furthermore, the behavioural flexibility was slightly reduced in the T-maze test. Interestingly, the performance of IL1RAPL1 knockout mice in the rotarod test was significantly better than that of wild-type mice. Moreover, IL1RAPL1 knockout mice consistently exhibited high locomotor activity in all the tasks examined. In addition, open-space and height anxiety-like behaviours were decreased in IL1RAPL1 knockout mice. These results suggest that IL1RAPL1 ablation resulted in spine density decrease and affected not only learning but also behavioural flexibility, locomotor activity and anxiety.
Little is known about the cerebral distribution and clearance of guanidinoacetate (GAA), the accumulation of which induces convulsions. The purpose of the present study was to identify creatine transporter (CRT)-mediated GAA transport and to clarify its cerebral expression and role in GAA efflux transport at the blood-cerebrospinal fluid barrier (BCSFB). CRT mediated GAA transport with a K(m) value of 269 microM/412 microM which was approximately 10-fold greater than that of CRT for creatine. There was wide and distinct cerebral expression of CRT and localization of CRT on the brush-border membrane of choroid plexus epithelial cells. The in vivo elimination clearance of GAA from the CSF was 13-fold greater than that of d-mannitol reflecting bulk flow of the CSF. This process was partially inhibited by creatine. The characteristics of GAA uptake by isolated choroid plexus and an immortalized rat choroid plexus epithelial cell line (TR-CSFB cells) used as an in vitro model of BCSFB are partially consistent with those of CRT. These results suggest that CRT plays a role in the cerebral distribution of GAA and GAA uptake by the choroid plexus. However, in the presence of endogenous creatine in the CSF, CRT may make only a limited contribution to the GAA efflux transport at the BCSFB.
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic suppression. Although the mechanisms of 2-AG production are well characterized, how 2-AG is degraded is less clearly understood. Here we found that expression of the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MGL) was highly heterogeneous in the cerebellum, being rich within parallel fiber (PF) terminals, weak in Bergman glia (BG), and absent in other synaptic terminals. Despite this highly selective MGL expression pattern, 2-AG–mediated retrograde suppression was significantly prolonged at not only PF-Purkinje cell (PC) synapses but also climbing fiber-PC synapses in granule cell-specific MGL knockout (MGL-KO) mice whose cerebellar MGL expression was confined to the BG. Virus-mediated expression of MGL into the BG of global MGL-KO mice significantly shortened 2-AG–mediated retrograde suppression at PF-PC synapses. Furthermore, contribution of MGL to termination of 2-AG signaling depended on the distance from MGL-rich PFs to inhibitory synaptic terminals. Thus, 2-AG is degraded in a synapse-type independent manner by MGL present in PFs and the BG. The results of the present study strongly suggest that MGL regulates 2-AG signaling rather broadly within a certain range of neural tissue, although MGL expression is heterogeneous and limited to a subset of nerve terminals and astrocytes.
Excess energy intake causes obesity, which leads to insulin resistance and various other complications of metabolic syndrome, including diabetes, atherosclerosis, dyslipidemia, and nonalcoholic fatty liver disease. Although recent studies have depicted altered lipid metabolism as an underlying feature, the detailed mechanisms are still unclear. Here we describe a possible role in high-fat diet (HFD)-induced obesity for monoacylglycerol lipase (MGL), an enzyme that is also known to hydrolyze the endocannabinoid 2-arachidonoylglycerol in brain. MGL-deficient [MGL-knockout (KO)] mice fed a HFD gained less body weight than wild-type mice and were protected from insulin resistance and hepatic steatosis. Food intake and energy expenditure were not altered in MGL-KO mice, but blood triglyceride levels after oral olive oil gavage were suppressed, indicating a role for MGL in intestinal fat absorption. Experiments with cannabinoid receptor type 1 (CB1)/MGL double-KO mice revealed that these phenotypes may include mechanisms that are independent of CB1-receptor–mediated endocannabinoid functions. We also noted that MGL-KO mice had less preference for HFD over normal chow diet. Oral but not intraperitoneal lipid administration strongly suppressed the appetites of MGL-KO and CB1/MGL double-KO mice, but not of wild-type and CB1-KO mice. Appetite suppression was reversed by vagotomy, suggesting involvement of MGL in the gut–brain axis regulation of appetite. Our results provide mechanistic insights of MGL's role in diet-induced obesity, lipid metabolic disorder, and regulation of appetite.—Yoshida, K., Kita, Y., Tokuoka, S. M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M., Shimizu, T. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor–deficient mice. FASEB J. 33, 2484–2497 (2019). www.fasebj.org
Based on the visual information processing system in the brain, we developed an association cortex to entorhinal - hippocampal neural network model (AEH model) for learning and recollection of human faces. We evaluated the learning and recollection performance of the AEH model by computer simulation. We presented each human face to the AEH model twice. We regarded that the AEH model recognized each face correctly if the AEH model learned the face the first time and recalled it the second time, in accordance with human perception. In the experiment, ten human faces were successively presented to the AEH model. The recognition performance of the model was 100 percent correct, indicating the effectiveness of the representation and transformation algorithm of the AEH model.
Significance Sleep is essential for healthy aging, and most people need approximately 8–8-1/2 hours of sleep per night to feel good and to function optimally. We previously reported a proline-to-arginine mutation in DEC2 that leads to a life-long decrease in daily sleep need. We found that the expression of an important sleep-relevant gene, orexin , was increased in the DEC2 mutant mice. Further investigation revealed that DEC2 is a transcriptional repressor for orexin expression, and that mutant DEC2 exerts less repressor activity than WT-DEC2, resulting in increased orexin expression. This study represents the first step toward understanding the underlying molecular mechanism through which DEC2 modulates sleep.