Mirabegron is a β3-adrenoreceptor agonist developed for treatment of overactive bladder (OAB). α1-Adrenergic receptor blockers are effective for lower urinary tract symptoms (LUTS) in male patients. However, the efficacy of mirabegron additional treatment in elderly male patients with persistent male LUTS, especially in OAB after monotherapy with α1-adrenergic blockers, is not fully understood. This study was conducted in male LUTS patients who were ≥ 65 years of age and had persistent OAB symptoms, regardless of whether they took an α1-adrenergic receptor blocker orally. Before and 12 weeks after mirabegron additional therapy (50 mg once daily), we evaluated the efficacy of this treatment using the Overactive Bladder Symptom Score (OABSS) and International Prostate Symptom Score (IPSS), and changes in the maximum flow rate (Qmax) and post-void residual urine volume (PVR). We evaluated patients overall and divided into two groups by age: young-old (from 65 to 74 years old) and old-old (from 75 to 84 years old). Fifty men were enrolled in this study. Mirabegron additional therapy improved the total OABSS, total IPSS, and IPSS-quality of life (QOL) score. The voided volume (VV) and Qmax improved after treatment in patients overall. However, there was no significant change in PVR. The total OABSS, total IPSS, and IPSS-QOL score significantly improved in both of the young-old and old-old groups. However, a significant increasing of VV was detected in the young-old group. There were no significant differences in the Qmax or PVR in either group. Mirabegron additional therapy was effective for male patients whose persistent LUTS and particularly OAB was not controlled with α1-adrenergic receptor blocker monotherapy, and mirabegron did not have negative effects on voiding function. Additionally, mirabegron additional therapy was considered effective regardless of patient age. Trial registration number (TRN) trial registration number (TRN) and date of registration: ISRCTN16759097 in July 8, 2016.
Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.
Urinary dysfunction is a common pathological condition that can significantly decrease the quality of life. Bladder outlet obstruction (BOO) is a major cause of urinary dysfunction, and various lower urinary tract diseases including benign prostatic hyperplasia and urethral stricture disease cause BOO. According to the results of a variety of animal experiments on partial BOO (PBOO), there is a general agreement that ischemic conditions and repeated ischemia/reperfusion of the bladder are closely associated with BOO-induced bladder damage, and that increased oxidative stress by ischemia/reperfusion plays a crucial role in the pathological mechanisms underlying urinary dysfunction. Changes in biomarkers of oxidative stress in PBOO animal models support this association between oxidative stress and urinary dysfunction. Oxidative stress is defined as an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidants. Therefore, organizing the knowledge on the state of oxidative stress, changes in biomarkers, and biological roles of antioxidants in systemic and bladder tissues is essential to understand the detailed pathological characteristics of the urinary dysfunction caused by PBOO. Furthermore, information on drugs and supplements that have antioxidant effects is important for defining treatment strategies for urinary dysfunction with PBOO. In this review, we paid special attention to the following three issues; (1) changes in oxidative stress, including its biomarkers, (2) antioxidant status, and (3) previous reports on treatment strategies involving agents with antioxidative activity for urinary dysfunction caused by BOO. In particular, we provide systematic information on the detailed mechanisms underlying the antioxidative effects of agents used to treat PBOO. In addition, we show present research issues and research limitations, as well as suggest possible future antioxidant treatment strategies for patients with PBOO.
To examine the efficacy and safety of a full-length metallic ureteral stent (MS), Resonance®, we retrospectively evaluated 16 cases (22 ureteral units) with indwelling MS as the initial treatment for patients with untreated malignant ureteral obstruction (MUO). All patients had undergone MS insertion by the retrograde approach without cystoscopy, with indirect stent placement under fluoroscopy, as a new method that can be performed even if the number of medical staff is one less than that required. Both serum creatinine and estimated glomerular filtration rate values in all cases improved significantly (p<0. 001). Moreover, MS failure occurred in only one patient and the stent patency rate was 93.8%. Stent-related complications were observed in four patients. Two patients experienced stent dislodgement, and one each had fever and acute pyelonephritis, although none of the complications were life-threatening. After the introduction of MS in our hospital, the rate of percutaneous nephrostomy in MUO patients excluding those not suited for indwelling MS, clearly decreased from 80% to 20%. This is the first report on the clinical evaluation of indwelling MS as the initial treatment of MUO in Japan, and this report indicates that MS is a very useful choice in terms of effectiveness, safety, medical cost, and reduction in the workload of medical staff. We believe that the indwelling MS will become a standard initial treatment for patients with untreated MUO in the future.
Gestational alloimmune liver disease (GALD) produces severe neonatal liver disease that is notable for paucity of hepatocytes, large numbers of parenchymal tubules, and extensive fibrosis. Liver specimens from 19 GALD cases were studied in comparison with 14 infants without liver disease (normal newborn liver; NNL) to better understand the pathophysiology that would produce this characteristic histopathology. GALD liver parenchyma contained large numbers of tubules comprising epithelium expressing KRT7/19, EPCAM, and SOX9, suggesting biliary progenitor status. Quantitative morphometry demonstrated that in GALD, the area density of KRT19+ tubules was 16.4 ± 6.2 versus 2.0 ± 2.6 area% in NNL (P < .0001). Functional hepatocyte mass was markedly reduced in GALD, 16.3 ± 6.2 versus 61.9 ± 11.0 area% of CPS1+ cells in NNL (P < .0001). A strong inverse correlation was established between CPS1+ area density and KRT19+ area density (r2 = 0.66, P < .0001). Tubules showed active hedgehog signaling as determined by SHH and nuclear GLI2 expression and expressed the profibrogenic cytokine SPP1. SPP1 protein content and SPP1 expression were greater in GALD than NNL (15- and 13-fold respectively; P = .002). GALD liver contained large numbers of activated myofibroblasts and showed greater than 10-fold more fibrosis than NNL. The extent of fibrosis correlated with the area density of KRT19+ tubules (r2 = 0.387, P = .001). The data support a pathogenic model in which immune injury to fetal hepatocytes provides a stimulus for expansion of parenchymal tubules, which, by way of Hh activation, produce fibrogenic signals leading to vibrant fibrosis.