Obesity is defined as the excessive accumulation of adipose tissue and is currently the most common disease in cats. Similarly to humans, obesity negatively impacts the health and welfare of cats, predisposing them to many other disorders. The objective of this study was to compare the serum proteomes of normal-weight and overweight/obese cats, aiming to gain insights into the physiopathology of feline obesity and potentially identify new biomarkers. For this, serum samples from a total of 20 adult neutered domestic shorthair client-owned cats, ten normal weight and ten overweight/obese, were submitted to tandem mass tags labelling and liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 288 proteins were detected in the serum samples. Out of these, 12 proteins showed statistically significant differences in abundance between control cats and cats with obesity, namely Ig-like domain-containing protein, Alpha-2-HS-glycoprotein, Complement C8 gamma chain, An-tithrombin-III, Serpin family A member 1, Complement factor H, C3-beta-c, Albumin, C4b-binding protein alpha chain, Alpha-1-B glycoprotein, Solute carrier family 12 member 4, and Fibronectin. Overall this report identifies new proteins involved and provides additional knowledge about the physiopathological changes related to feline obesity.
Five specialy interesting cases operated under the clinical picture of acute appendicitis have been described by authors. Another completely different disease have been found during the operation, which required spread surgical treatment combined with blood transfusion even if we didn't identified the blood group. For this reason you have to pay attention while making a final diagnosis because the mistakes are very common, about 25% in out patient department while 1--3% in clinical conditions.
Liver fluke infections are recognised as diseases with worldwide distribution and considerable veterinary and public health importance. The giant liver fluke, Fascioloides magna, is an important non-native parasite which has been introduced to Europe, posing a threat to the survival of local wildlife populations such as red deer (Cervus elaphus). The aim of the study was to analyse differences in liver proteomes between F. magna-infected and control red deer groups using a label-based high-throughput quantitative proteomics approach. The proteomics analysis identified 234 proteins with differential abundance between the control and infected groups. Our findings showed that F. magna infection in this definitive host is associated with changes in the metabolism of proteins and fatty acids, oxidative stress, fibrosis, and signaling pathways. The identified proteins and associated biological pathways represent a valuable contribution to the understanding of host–parasite interactions and the pathogenesis of liver fluke infection.
Canine babesiosis is an important tick-borne disease worldwide, caused by parasites of the Babesia genus. Although the disease process primarily affects erythrocytes, it may also have multisystemic consequences. The goal of this study was to explore and characterize the serum metabolome, by identifying potential metabolites and metabolic pathways in dogs naturally infected with Babesia canis using liquid and gas chromatography coupled to mass spectrometry. The study included 12 dogs naturally infected with B. canis and 12 healthy dogs. By combining three different analytical platforms using untargeted and targeted approaches, 295 metabolites were detected. The untargeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) metabolomics approach identified 64 metabolites, the targeted UHPLC-MS/MS metabolomics approach identified 205 metabolites, and the GC-MS metabolomics approach identified 26 metabolites. Biological functions of differentially abundant metabolites indicate the involvement of various pathways in canine babesiosis including the following: glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; cysteine and methionine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. This study confirmed that host-pathogen interactions could be studied by metabolomics to assess chemical changes in the host, such that the differences in serum metabolome between dogs with B. canis infection and healthy dogs can be detected with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) methods. Our study provides novel insight into pathophysiological mechanisms of B. canis infection.
In this study, changes in salivary and serum proteome of dogs with hypothyroidism were studied using tandem mass tags (TMT) labelling and liquid chromatography-mass spectrometry (LC-MS/MS). Saliva and serum proteome from 10 dogs with hypothyroidism were compared with 10 healthy dogs. In saliva, a total of seven proteins showed significant changes between the two groups, being six downregulated and one upregulated, meanwhile, in serum, a total of six proteins showed significant changes, being five downregulated and one upregulated. The altered proteins reflected metabolic and immunologic changes, as well as, skin and coagulation alterations, and these proteins were not affected by gender. One of the proteins that were downregulated in saliva, lactate dehydrognease (LDH), was measured by a spectrophotometric assay in saliva samples from 42 dogs with hypothyroidism, 42 dogs with non-thyroid diseases and 46 healthy dogs. The activity of LDH was lower in the saliva of hypothyroid dogs when compared to non-thyroid diseased dogs and healthy controls. This study indicates that canine hypothyroidism can produce changes in the proteome of saliva and serum. These two sample types showed different variations in their proteins reflecting physiopathological changes that occur in this disease, mainly related to the immune system, metabolism, skin and coagulation. In addition, some of the proteins identified in this study, specially LDH in saliva, should be further explored as potential biomarkers of canine hypothyroidism.
Dairy cows can suffer from a negative energy balance (NEB) during their transition from the dry period to early lactation, which can increase the risk of postpartum diseases such as clinical ketosis, mastitis, and fatty liver. Zeolite clinoptilolite (CPL), due to its ion-exchange property, has often been used to treat NEB in animals. However, limited information is available on the dynamics of global metabolomics and proteomic profiles in serum that could provide a better understanding of the associated altered biological pathways in response to CPL. Thus, in the present study, a total 64 serum samples were collected from 8 control and 8 CPL-treated cows at different time points in the prepartum and postpartum stages. Labelled proteomics and untargeted metabolomics resulted in identification of 64 and 21 differentially expressed proteins and metabolites, respectively, which appear to play key roles in restoring energy balance (EB) after CPL supplementation. Joint pathway and interaction analysis revealed cross-talks among valproic acid, leucic acid, glycerol, fibronectin, and kinninogen-1, which could be responsible for restoring NEB. By using a global proteomics and metabolomics strategy, the present study concluded that CPL supplementation could lower NEB in just a few weeks, and explained the possible underlying pathways employed by CPL.
Meningitis due to Streptococcus suis causes high mortality and morbidity on pig farms and has increasing zoonotic potential worldwide. Saliva proteome analysis would potentially be useful in elucidating pathophysiological changes and mining for new biomarkers to diagnose and monitor S. suis infection. The objective of this study was to investigate the changes in the salivary and serum proteome profile of piglets with meningitis. The LC-MS/MS TMT proteomic approach was used to analyze saliva and serum samples from 20 male piglets: 10 with meningitis and 10 healthy. In saliva, 11 proteins had higher and 10 had lower relative abundance in piglets with meningitis. The proteins with the highest relative abundance were metavinculin (VCL) and desmocollin-2 (DSC2). Adenosine deaminase (ADA) was selected for validation using a spectrophotometric assay and demonstrated excellent performance in the differentiation between healthy and pigs with meningitis due to S. suis. In serum, the most protruding changes occurred for one SERPIN and haptoglobin (HP). In saliva and serum, the highest number of proteins with altered abundance were linked, via the enrichment analysis, with platelet and neutrophil pathways. Overall, meningitis caused by S. suis resulted in specific proteome changes in saliva and serum, reflecting different pathophysiological mechanisms, and marking new potential biomarkers for this infection.