Sepsis is associated with increased mortality, delirium and long-term cognitive impairment in intensive care unit (ICU) patients. Electroencephalogram (EEG) abnormalities occurring at the acute stage of sepsis may correlate with severity of brain dysfunction. Predictive value of early standard EEG abnormalities for mortality in ICU septic patients remains to be assessed.In this prospective, single center, observational study, standard EEG was performed, analyzed and classified according to both Synek and Young EEG scales, in consecutive patients acutely admitted in ICU for sepsis. Delirium, coma and the level of sedation were assessed at the time of EEG recording; and duration of sedation, occurrence of in-ICU delirium or death were assessed during follow-up. Adjusted analyses were carried out using multiple logistic regression.One hundred ten patients were included, mean age 63.8 (±18.1) years, median SAPS-II score 38 (29-55). At the time of EEG recording, 46 patients (42%) were sedated and 22 (20%) suffered from delirium. Overall, 54 patients (49%) developed delirium, of which 32 (29%) in the days after EEG recording. 23 (21%) patients died in the ICU. Absence of EEG reactivity was observed in 27 patients (25%), periodic discharges (PDs) in 21 (19%) and electrographic seizures (ESZ) in 17 (15%). ICU mortality was independently associated with a delta-predominant background (OR: 3.36; 95% CI [1.08 to 10.4]), absence of EEG reactivity (OR: 4.44; 95% CI [1.37-14.3], PDs (OR: 3.24; 95% CI [1.03 to 10.2]), Synek grade ≥ 3 (OR: 5.35; 95% CI [1.66-17.2]) and Young grade > 1 (OR: 3.44; 95% CI [1.09-10.8]) after adjustment to Simplified Acute Physiology Score (SAPS-II) at admission and level of sedation. Delirium at the time of EEG was associated with ESZ in non-sedated patients (32% vs 10%, p = 0.037); with Synek grade ≥ 3 (36% vs 7%, p< 0.05) and Young grade > 1 (36% vs 17%, p< 0.001). Occurrence of delirium in the days after EEG was associated with a delta-predominant background (48% vs 15%, p = 0.001); absence of reactivity (39% vs 10%, p = 0.003), Synek grade ≥ 3 (42% vs 17%, p = 0.001) and Young grade >1 (58% vs 17%, p = 0.0001).In this prospective cohort of 110 septic ICU patients, early standard EEG was significantly disturbed. Absence of EEG reactivity, a delta-predominant background, PDs, Synek grade ≥ 3 and Young grade > 1 at day 1 to 3 following admission were independent predictors of ICU mortality and were associated with occurence of delirium. ESZ and PDs, found in about 20% of our patients. Their prevalence could have been higher, with a still higher predictive value, if they had been diagnosed more thoroughly using continuous EEG.
Somatosensory (SSEP) and brainstem auditory (BAEP) evoked potentials are neurophysiological tools which, respectively, explore the intracranial conduction time (ICCT) and the intrapontine conduction time (IPCT). The prognostic values of prolonged cerebral conduction times in deeply sedated patients have never been assessed. Sedated patients are at risk of developing new neurological complications, undetected. In this prospective observational bi-center pilot study, we investigated whether early impairment of SSEP's ICCT and/or BAEP's IPCT could predict in-ICU mortality or altered mental status (AMS), in deeply sedated critically ill patients. SSEP by stimulation of the median nerve and BAEP were assessed in critically ill patients receiving deep sedation on day 3 following ICU admission. Deep sedation was defined by a Richmond Assessment sedation Scale (RASS) <−3. Mean left- and right-side ICCT and IPCT were measured for each patient. Primary and secondary outcomes were, respectively, in-ICU mortality and AMS defined as the occurrence of delirium and/or delayed awakening after discontinuation of sedation. Eighty-six patients were studied of which 49 (57%) were non-brain-injured and 37 (43%) were brain-injured. Impaired ICCT was a predictor of in-ICU mortality after adjustment on the global Sequential Organ Failure Assessment score (SOFA) [OR (95% CI) = 2.69 (1.05–6.85); p = 0.039] and on the non-neurological SOFA components [2.67 (1.05–6.81); p = 0.040]. IPCT was more frequently delayed in the subgroup of patients who developed post-sedation AMS (24%) compared those without AMS (0%). However, this difference did not reach statistical significance (p = 0.053). Impairment rates of ICCT and IPCT were not found to be significantly different between non-brain- and brain-injured subgroups of patients. In critically ill patients receiving deep sedation, early ICCT impairment was associated with mortality. Somatosensory and brainstem auditory evoked potentials may be useful early warning indicators of brain dysfunction as well as prognostic markers in deeply sedated critically ill patients.
Deep sedation may hamper the detection of neurological deterioration in brain-injured patients. Impaired brainstem reflexes within the first 24 h of deep sedation are associated with increased mortality in non-brain-injured patients. Our objective was to confirm this association in brain-injured patients.This was an observational prospective multicenter cohort study involving four neuro-intensive care units. We included acute brain-injured patients requiring deep sedation, defined by a Richmond Assessment Sedation Scale (RASS) < -3. Neurological assessment was performed at day 1 and included pupillary diameter, pupillary light, corneal and cough reflexes, and grimace and motor response to noxious stimuli. Pre-sedation Glasgow Coma Scale (GCS) and Simplified Acute Physiology Score (SAPS-II) were collected, as well as the cause of death in the Intensive Care Unit (ICU).A total of 137 brain-injured patients were recruited, including 70 (51%) traumatic brain-injured patients, 40 (29%) vascular (subarachnoid hemorrhage or intracerebral hemorrhage). Thirty patients (22%) died in the ICU. At day 1, the corneal (OR 2.69, p = 0.034) and cough reflexes (OR 5.12, p = 0.0003) were more frequently abolished in patients that died in the ICU. In a multivariate analysis, abolished cough reflex was associated with ICU mortality after adjustment to pre-sedation GCS, SAPS-II, RASS (OR: 5.19, 95% CI [1.92-14.1], p = 0.001) or dose of sedatives (OR: 8.89, 95% CI [2.64-30.0], p = 0.0004).Early (day 1) cough reflex abolition is an independent predictor of mortality in deeply sedated brain-injured patients. Abolished cough reflex likely reflects a brainstem dysfunction that might result from the combination of primary and secondary neuro-inflammatory cerebral insults revealed and/or worsened by sedation.