Silica cementation exerts a key control on the compaction and geotechnical properties of mudstones, and by extension, the style of hydrocarbon and/or mineral systems present in a given sedimentary basin. Integrated microscopic and bulk geochemical observations demonstrate that siliceous mudstones in the Bowland Shale Formation, a target for UK shale gas extraction, exhibit abundant dispersed, discrete, μm-scale quartz cements, and exhibit silica enrichment ('excess') above a local detrital Si/Al threshold of 2.5. Dissolution of siliceous radiolarian tests during early diagenesis is identified as the main source of silica (opal A) required for quartz precipitation, either via opal CT or directly to quartz, and potentially generated as a product of anoxic marine 'weathering' (dissolution) of reactive silicates during early diagenesis. Excess silica correlates with free hydrocarbons (S1) normalised to total organic carbon (oil saturation index; OSI); we propose early diagenetic quartz precipitation suppressed pore collapse ('buttress effect'), retaining the pore space capacity to host oil. Quartz precipitation was likely catalysed, for example via low porewater pH, elevated Al and/or Fe oxide content, and/or abundant labile organic matter. Juxtaposition of siliceous mudstones and mudstones lacking quartz cement indicates silica was immobile beyond the bed scale. Thus metre-scale siliceous packages likely represent more prospective units within the Bowland Shale (in terms of unconventional hydrocarbons), on the basis of early diagenetic biogenic-derived quartz cementation leading to improved hydrocarbon storage capacity coupled to enhanced brittleness. These findings are relevant for shale oil and shale gas systems, specifically where oil retained in pores subsequently cracks to generate gas. These findings also suggest the Bowland Shale is a sub-class of black shale, defined by the potential to host a relatively large volume of early diagenetic fluids, derived from anoxic bottom waters, which were potentially S- and/or metal-bearing. This is potentially relevant for understanding the genesis of adjacent and related Pb-Zn mineral deposits.
Abstract As the fastest growing energy sector globally, shale and shale reservoirs have attracted the attention of both industry and scholars. However, the strong heterogeneity at different scales and the extremely fine-grained nature of shales makes macroscopic and microscopic characterization highly challenging. Recent advances in imaging techniques have provided many novel characterization opportunities of shale components and microstructures at multiple scales. Correlative imaging, where multiple techniques are combined, is playing an increasingly important role in the imaging and quantification of shale microstructures (e.g. one can combine optical microscopy, scanning electron microscopy/transmission electron microscopy and X-ray radiography in 2D, or X-ray computed tomography and electron microscopy in 3D). Combined utilization of these techniques can characterize the heterogeneity of shale microstructures over a large range of scales, from macroscale to nanoscale ( c. 10 0 –10 −9 m). Other chemical and physical measurements can be correlated to imaging techniques to provide complementary information for minerals, organic matter and pores. These imaging techniques and subsequent quantification methods are critically reviewed to provide an overview of the correlative imaging workflow. Applications of the above techniques for imaging particular features in different shales are demonstrated, and key limitations and benefits summarized. Current challenges and future perspectives in shale imaging techniques and their applications are discussed.
The development of pore and fracture networks at the nano-scale as a response to heating can reveal coupled physical relationships relevant to several energy applications. A combination of time-lapse 3D imaging and finite-element modelling (FEM) was performed on two typical thermally immature shale samples, Kimmeridge Clay and Akrabou shale, to investigate thermal response at the nm-scale for the first time. Samples were imaged using Transmission X-ray Microscopy (TXM) with a voxel resolution of 34 nm at the I13–2 beamline at Diamond Light source, UK. Images were taken after heating to temperatures of 20 °C, 300 °C, 350 °C and 400 °C. The initiation of nano-pores within individual minerals and organic matter particles were observed and quantified alongside the evolution from nano-pores to micro-fractures. The major expansion of pore-volume occurred between 300 and 350 °C in both samples, with the pores elongating rapidly along the organic-rich bedding. The internal pressures induced by organic matter transformation influenced the development of microfractures. Mechanical properties and strain distributions within these two samples were modelled under a range of axial stresses using FEM. The results show that the overall stiffness of the shale reduced during heating, despite organic matter becoming stiffer. The varied roles of ductile (e.g., clay minerals, organic matter) and brittle materials (e.g., calcite, pyrite) within the rock matrix are also modelled and discussed. The configurations of organic matter, mineral components, porosity and connectivity impact elastic deformation during shale pyrolysis. This work extends our understanding of dynamic coupled processes of microstructure and elastic deformation in shales to the nm-scale, which also has applications to other subsurface energy systems such as carbon sequestration, geothermal and nuclear waste disposal.
Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging techniques were utilized correlatively, including the application of Xe+ plasma focused ion beam scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga+ FIB method which is now frequently used to characterise porosity and organic/inorganic phases, together with transmission electron microscope tomography of the nano-scale pores (voxel size 0.6 nm; resolution 1-2 nm). The three pore-size scales each contribute differently to the pore network. Those <10 nm (greatest number), 10 nm to 100 nm (best-connected hence controls transport properties), and >100 nm (greatest total volume hence determines fluid storativity). Four distinct pore types were found: intra-organic, organic-mineral interface, inter-mineral and intra-mineral pores were recognized, with characteristic geometries. The whole pore network comprises a globally-connected system between phyllosilicate mineral grains (diameter: 6-50 nm), and locally-clustered connected pores within porous organic matter (diameter: 200-800 nm). Integrated predictions of pore geometry, connectivity, and roles in controlling petrophysical properties were verified through experimental permeability measurements.
Cutting-edge techniques have always been utilized in petroleum exploration and production to reduce costs and improve efficiencies. The demand for petroleum in the form of oil and gas is expected to increase for electricity production, transport and chemical production, largely driven by an increase in energy consumption in the developing world. Innovations in analytical methods will continue to play a key role in the industry moving forwards as society shifts towards lower carbon energy systems and more advantaged oil and gas resources are targeted. This volume brings together new analytical approaches and describes how they can be applied to the study of petroleum systems. The papers within this volume cover a wide range of topics and case studies, in the fields of fluid and isotope geochemistry, organic geochemistry, imaging and sediment provenance. The work illustrates how the current, state-of-the-art technology can be effectively utilised to address ongoing challenges in petroleum geoscience.