One-fifth of the global population is infected with soil-transmitted helminths (STH). Mass drug administration (MDA) with deworming medication is widely implemented to control morbidity associated with STH infections. However, surveillance of human infection prevalence by collecting individual stool samples is time-consuming, costly, often stigmatized, and logistically challenging. Current methods of STH detection are poorly sensitive, particularly in low-intensity and low-prevalence populations.
We investigated the circulating plasma levels of Th1- (Interleukin-2 [IL-2], tumor necrosis factor-α [TNF-α], interferon-gamma [IFN-γ]) and Th2-type (IL-4, IL-5, IL-10) cytokines in human immunodeficiency virus (HIV)-infected pregnant women living in a malaria-endemic area. We analyzed samples from 200 pregnant women included in the prevention of pregnancy-associated malaria in HIV-infected women: cotrimoxazole prophylaxis versus mefloquine (PACOME) clinical trial who were followed until delivery. Cytokine concentrations were measured by flow cytometry-based multiplex bead array. Significantly elevated levels of IL-10 and lower levels of TNF-α were observed at delivery compared with inclusion (P = 0.005). At inclusion, the presence of circulating IFN-γ, a higher CD4(+) T cell count and having initiated intermittent preventive treatment of malaria with sulfadoxine pyrimethamine (SP-IPTp) were all associated with a lower likelihood of Plasmodium falciparum infection. At delivery, the inverse relationship between the presence of infection and circulating IFN-γ persisted, although there was a positive association between the likelihood of infection and the presence of circulating TNF-α. Initiation of antiretroviral therapy was associated with elevated IL-5 production. Consistent with our own and others' observations in HIV seronegative subjects, this study shows circulating IL-10 to be a marker of infection with P. falciparum during pregnancy even in HIV-infected women, although plasma IFN-γ may be a marker of anti-malarial protection in such women.
Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface proteins involved in hepatocyte invasion, while the other two were predominantly expressed during hepatic parasite development. The genome-wide up-regulation of expression observed supports the hypothesis that the shift from the mosquito to the mammalian host contributes to activate quiescent salivary gland sporozoites into a state of readiness for the hepatic stages. Functional studies on four of the up-regulated genes validated our approach as one means to determine the repertoire of proteins implicated during the early events of the Plasmodium infection, and in this case that of P. falciparum, the species responsible for the severest forms of malaria.
Abstract Poor birth outcomes in low- and middle income countries are associated with maternal vitamin D deficiency and chronic helminth infections. Here, we investigated whether maternal Schistosoma haematobium affects maternal or cord vitamin D status as well as birth outcomes. In a prospective cross-sectional study of pregnant women conducted in Lambaréné, Gabon, we diagnosed maternal parasitic infections in blood, urine and stool. At delivery we measured vitamin D in maternal and cord blood. S. haematobium , soil-transmitted helminths, and microfilariae were found at prevalences of 30.2%, 13.0%, and 8.8%, respectively. Insufficient vitamin D and calcium levels were found in 28% and 15% of mothers, and in 11.5% and 1.5% of newborns. Mothers with adequate vitamin D had lower risk of low birthweight babies (aOR = 0.11, 95% CI 0.02–0.52, p = 0.01), whilst offspring of primipars had low cord vitamin D levels, and low vitamin D levels increased the risk of maternal inflammation. Maternal filariasis was associated with low calcium levels, but other helminth infections affected neither vitamin D nor calcium levels in either mothers or newborns. Healthy birth outcomes require maintenance of adequate vitamin D and calcium levels. Chronic maternal helminth infections do not disrupt those levels in a semi-rural setting in sub-Saharan Africa.
To investigate the relationship between parasite prevalence and malaria-related morbidity, we carried out a comparative study among cohorts of school children from two villages, Dienga, Gabon, and Pouma, Cameroon, both located in malaria-endemic areas. Seven to 17 year-old children attending primary schools were similarly followed-up at each site to evaluate the frequency of malaria attacks. Follow-up involved daily temperature recording (and blood smears in the case of fever) and preparation of blood smears every two weeks. In Pouma, 186 children were followed-up for six months. In Dienga, 228 children were followed-up for nine months. The mean prevalence rate of Plasmodium falciparum infections (as assessed by the blood smears) was twice as high in Pouma compared with Dienga (45.2% versus 26.8%; P < 0.0001), whereas the monthly malaria attack rate (as assessed by the daily surveillance) was twice as high in Dienga compared with Pouma (21.5% versus 41.4%; P = 0.003). The possible implication of several parameters that may differ between the two areas, such as the malaria transmission level, the economical and social status of the inhabitants, the characteristics of infecting parasite strains, and the genetic background of the population, is discussed.
In malarious areas of the world, a higher proportion of the population has blood group O than in non-malarious areas. This is probably due to a survival advantage conferred either by an attenuating effect on the course of or reduction in the risk of infection by plasmodial parasites. Here, the association between ABO blood group and incidence of placental malaria was assessed in order to determine the possible influence of the former on the latter.Data from a study in Lambaréné, Gabon, and data from three previously published reports of studies in The Gambia, Malawi and Sudan, were compiled and compared. ABO blood groups were cross-tabulated with placental malaria stratified by parity. Odds ratios (OR), stratified by parity, were calculated for the outcome, placental parasitaemia, and compared between blood group O vs. non-O mothers in all four studies. Random effects meta-analysis of data from individual studies from areas with perennial hyper/holoendemic transmission was performed.In Gabon, the odds ratio (OR) for active placental parasitaemia in mothers with group O was 0.3 (95% CI 0.05-1.8) for primiparae and 0.7 (95% CI 0.3-1.8) for multiparae. The OR for primiparae in the published study from The Gambia was 3.0 (95% CI 1.2-7.3) and, in Malawi, 2.2 (95% CI 1.1-4.3). In the Sudanese study, no OR for primiparae could be calculated. The OR for placental parasitaemia in group O multiparae was 0.8 (95% CI 0.3-1.7) in the Gambia, 0.6 (95% CI 0.4-1.0) in Malawi and 0.4 (95% CI 0.1-1.8) in Sudan. Combining data from the three studies conducted in hyper-/holo-endemic settings (Gambia, Malawi, Gabon) the OR for placental malaria in blood group O multiparae was 0.65 (95% CI 0.44-0.96) and for primiparae 1.70 (95% CI 0.67-4.33).Studies conducted in The Gambia and Malawi suggest that blood group O confers a higher risk of active placental infection in primiparae, but a significantly lower risk in multiparae. These findings were not confirmed by the study from Gabon, in which statistically non-significant trends for reduced risk of placental parasitaemia in those with blood group O, regardless of parity, were observed.