Abstract Objective: To test the feasibility of targeted gown and glove use by healthcare personnel caring for high-risk nursing-home residents to prevent Staphylococcus aureus acquisition in short-stay residents. Design: Uncontrolled clinical trial. Setting: This study was conducted in 2 community-based nursing homes in Maryland. Participants: The study included 322 residents on mixed short- and long-stay units. Methods: During a 2-month baseline period, all residents had nose and inguinal fold swabs taken to estimate S. aureus acquisition. The intervention was iteratively developed using a participatory human factors engineering approach. During a 2-month intervention period, healthcare personnel wore gowns and gloves for high-risk care activities while caring for residents with wounds or medical devices, and S. aureus acquisition was measured again. Whole-genome sequencing was used to assess whether the acquisition represented resident-to-resident transmission. Results: Among short-stay residents, the methicillin-resistant S. aureus acquisition rate decreased from 11.9% during the baseline period to 3.6% during the intervention period (odds ratio [OR], 0.28; 95% CI, 0.08–0.92; P = .026). The methicillin-susceptible S. aureus acquisition rate went from 9.1% during the baseline period to 4.0% during the intervention period (OR, 0.41; 95% CI, 0.12–1.42; P = .15). The S. aureus resident-to-resident transmission rate decreased from 5.9% during the baseline period to 0.8% during the intervention period. Conclusions: Targeted gown and glove use by healthcare personnel for high-risk care activities while caring for residents with wounds or medical devices, regardless of their S. aureus colonization status, is feasible and potentially decreases S. aureus acquisition and transmission in short-stay community-based nursing-home residents.
Inducible costimulator (ICOS) and its ligand (ICOSL) regulate T and B cell responses. Glucose-6-phosphate isomerase (G6PI)-induced arthritis requires T and B lymphocytes. It was hypothesised that blocking ICOS/ICOSL interactions ameliorates G6PI-induced arthritis and reduces G6PI-specific B and T lymphocyte responses.
Methods
DBA/1 mice were injected with a blocking, non-depleting anti-ICOSL monoclonal antibodies (mAbs) during the induction or effector phase of G6PI-induced arthritis. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th) cell responses were assayed by polychromatic flow cytometry.
Results
Transient blockade of ICOS/ICOSL interactions profoundly reduced the severity of G6PI-induced arthritis. ELISA and proliferation assays showed no clear ex vivo correlates of protection. Polychromatic flow cytometry revealed two major findings: the absolute number of G6PI-specific Th cells was markedly diminished in secondary lymphatic organs from mice with blocked ICOS/ICOSL interactions. Within the pool of G6PI-specific Th cells the frequency of interleukin 17 (IL17), interferon γ or tumour necrosis factor α producers or polyfunctional Th cells (expressing two or more of these cytokines) was higher in treated than in control mice.
Conclusions
ICOS costimulation is not mandatory for the differentiation of Th1 or Th17 cells. Instead, the lack of ICOS costimulation results in reduced survival of G6PI-specific Th cells irrespective of their functional differentiation. This study demonstrates that a thorough examination of the quantity and the quality of antigen-specific immune responses is useful to determine ex vivo correlates of efficacy for immunomodulating treatments.
Localized genomic variability is crucial for the ongoing conflicts between infectious microbes and their hosts. An understanding of evolutionary and adaptive patterns associated with genomic variability will help guide development of vaccines and antimicrobial agents. While most analyses of the human microbiome have focused on taxonomic classification and gene annotation, we investigated genomic variation of skin-associated viral communities. We evaluated patterns of viral genomic variation across 16 healthy human volunteers. Human papillomavirus (HPV) and Staphylococcus phages contained 106 and 465 regions of diversification, or hypervariable loci, respectively. Propionibacterium phage genomes were minimally divergent and contained no hypervariable loci. Genes containing hypervariable loci were involved in functions including host tropism and immune evasion. HPV and Staphylococcus phage hypervariable loci were associated with purifying selection. Amino acid substitution patterns were virus dependent, as were predictions of their phenotypic effects. We identified diversity generating retroelements as one likely mechanism driving hypervariability. We validated these findings in an independently collected skin metagenomic sequence dataset, suggesting that these features of skin virome genomic variability are widespread. Our results highlight the genomic variation landscape of the skin virome and provide a foundation for better understanding community viral evolution and the functional implications of genomic diversification of skin viruses.
The Mid-Atlantic Microbiome Meet-up (M3) organization brings together academic, government, and industry groups to share ideas and develop best practices for microbiome research. In January of 2018, M3 held its fourth meeting, which focused on recent advances in biodefense, specifically those relating to infectious disease, and the use of metagenomic methods for pathogen detection. Presentations highlighted the utility of next-generation sequencing technologies for identifying and tracking microbial community members across space and time. However, they also stressed the current limitations of genomic approaches for biodefense, including insufficient sensitivity to detect low-abundance pathogens and the inability to quantify viable organisms. Participants discussed ways in which the community can improve software usability and shared new computational tools for metagenomic processing, assembly, annotation, and visualization. Looking to the future, they identified the need for better bioinformatics toolkits for longitudinal analyses, improved sample processing approaches for characterizing viruses and fungi, and more consistent maintenance of database resources. Finally, they addressed the necessity of improving data standards to incentivize data sharing. Here, we summarize the presentations and discussions from the meeting, identifying the areas where microbiome analyses have improved our ability to detect and manage biological threats and infectious disease, as well as gaps of knowledge in the field that require future funding and focus.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
ABSTRACT Chronic, non-healing wounds are a major complication of diabetes associated with high morbidity and health care expenditures estimated at $9-13 billion annually in the US. Though microbial infection and critical colonization is hypothesized to impair healing and contribute to severe outcomes such as amputation, antimicrobial therapy is inefficacious and the role of microbes in tissue repair, regeneration, and healing remains unclear. Here, in a longitudinal prospective cohort study of 100 subjects with non-infected neuropathic diabetic foot ulcer (DFU), we performed metagenomic shotgun sequencing to elucidate microbial temporal dynamics at strain-level resolution, to investigate pathogenicity and virulence of the DFU microbiome with respect to outcomes, and to determine the influence of therapeutic intervention on the DFU microbiota. Slow healing DFUs were associated with signatures of biofilm formation, host invasion, and virulence. Though antibiotic resistance was widespread at the genetic level, debridement, rather than antibiotic treatment, significantly shifted the DFU microbiome in patients with more favorable outcomes. Primary clinical isolates of S. aureus, C. striatum , and A. faecalis induced differential biological responses in keratinocytes and in a murine model of diabetic wound healing, with the S. aureus strain associated with non-healing wounds eliciting the most severe phenotype. Together these findings implicate strain-level diversification of the wound pathogen S. aureus in chronic wound outcomes, while revealing potential contributions from skin commensals and other previously underappreciated constituents of the wound microbiota.