Gateway Centaur and Jupiter co-orbital P/2019 LD2 (ATLAS) (Sarid et al. 2019) provides the first opportunity to observe the migration of a Solar System small body from a Centaur orbit to a Jupiter Family Comet (JFC) four decades from now (Kareta et al., 2020; Hsieh et al. 2020). The Gateway transition region is beyond where water ice can power cometary activity, and coma production there is as poorly understood as in all Centaurs. We present contemporaneous multi-wavelength observations of LD2 from 2020 July 2-4: Gemini-North visible imaging, NASA IRTF near-infrared spectroscopy, and ARO SMT millimeter-wavelength spectroscopy. Precovery DECam images limit the nucleu's effective radius to <=1.2 km and no large outbursts were seen in archival Catalina Sky Survey observations. LD2's coma has g'-r'=0.70+/-0.07, r'-i'=0.26+/-0.07, a dust production rate of ~10-20 kg/s, and an outflow velocity between v~0.6-3.3 m/s. We did not detect CO towards LD2 on 2020 July 2-3, with a 3-sigma upper limit of Q(CO) < 4.4 * 10^27 mol/s (<200 kg/s). Near-infrared spectra show evidence for water ice at the 1-10% level depending on grain size. Spatial profiles and archival data are consistent with sustained activity. The evidence supports the hypothesis that LD2 is a typical small Centaur that will become a typical JFC, and thus it is critical to understanding the transition between these two populations. Finally, we discuss potential strategies for a community-wide, long baseline monitoring effort.
Abstract We report on observations of activity in near-Earth object (3552) Don Quixote using the Spitzer Space Telescope and ground-based telescopes around its 2018 perihelion passage. Spitzer observations obtained six months before perihelion show extended emission around the target’s nucleus that is most likely caused by molecular band emission from either CO 2 or CO, but we find no significant emission from dust. Ground-based optical observations taken close to perihelion reveal for the first time activity in the optical wavelengths, which we attribute to solar light reflected from dust particles. IRAM millimeter radio observations taken around the same time are unable to rule out CO as the driver of the molecular band emission observed with Spitzer. The comparison of the gas activity presented here with observations performed during Don Quixote’s previous apparition suggests that activity in Don Quixote is recurrent. We conclude that (3552) Don Quixote is most likely a weakly active comet.
Abstract The Atacama Desert is the driest and one of the most life‐limiting places on Earth. Despite the extreme conditions, microbial endolithic communities have been found inside halite rocks. The presence of these microbial communities is possible due to the hygroscopic properties of evaporitic rocks composed of sodium chloride. It is important to elucidate every possible water source in such a hyperarid environment. Therefore, in the present study, an artificial neural network (ANN) based model has been designed to predict the presence of liquid water on the surface of halite pinnacles. The model predicts the moisture formation using two basic meteorological variables, air temperature, and air relative humidity. ANNs have been successfully employed for the first time as a tool for predicting the appearance of liquid water, a key factor for the endolithic microbial communities living in the driest part of the Atacama Desert. The model developed is able to correctly predict the formation of water on the surface of the halite pinnacles 83% of the cases. We anticipate the future application of this model as an important tool for the prediction of the water availability and therefore potential habitability of lithic substrates in extreme environments on Earth and perhaps elsewhere.
Abstract Comet C/2016 R2 (PanSTARRS) has a peculiar volatile composition, with CO being the dominant volatile, as opposed to H 2 O, and one of the largest N 2 /CO ratios ever observed in a comet. Using observations obtained with the Spitzer Space Telescope , NASA’s Infrared Telescope Facility, the 3.5 m Astrophysical Research Consortium telescope at Apache Point Observatory, the Discovery Channel Telescope at Lowell Observatory, and the Arizona Radio Observatory 10 m Submillimeter Telescope, we quantified the abundances of 12 different species in the coma of R2 PanSTARRS: CO, CO 2 , H 2 O, CH 4 , C 2 H 6 , HCN, CH 3 OH, H 2 CO, OCS, C 2 H 2 , NH 3 , and N 2 . We confirm the high abundances of CO and N 2 and heavy depletions of H 2 O, HCN, CH 3 OH, and H 2 CO compared to CO reported by previous studies. We provide the first measurements (or most sensitive measurements/constraints) on H 2 O, CO 2 , CH 4 , C 2 H 6 , OCS, C 2 H 2 , and NH 3 , all of which are depleted relative to CO by at least 1–2 orders of magnitude compared to values commonly observed in comets. The observed species also show strong enhancements relative to H 2 O, and, even when compared to other species like CH 4 or CH 3 OH, most species show deviations from typical comets by at least a factor of 2–3. The only mixing ratios found to be close to typical are CH 3 OH/CO 2 and CH 3 OH/CH 4 . The CO 2 /CO ratio is within a factor of 2 of those observed for C/1995 O1 (Hale-Bopp) and C/2006 W3 (Christensen) at a similar heliocentric distance, though it is at least an order of magnitude lower than many other comets observed with AKARI . While R2 PanSTARRS was located at a heliocentric distance of 2.8 au at the time of our observations in 2018 January/February, we argue, using sublimation models and comparison to other comets observed at similar heliocentric distance, that this alone cannot account for the peculiar observed composition of this comet and therefore must reflect its intrinsic composition. We discuss possible implications for this clear outlier in compositional studies of comets obtained to date and encourage future dynamical and chemical modeling in order to better understand what the composition of R2 PanSTARRS tells us about the early solar system.