In the development of oxynitride photocatalysts, thermal ammonolysis of a metal oxide precursor has often been conducted by varying the reaction conditions (e.g., temperatures, reaction times, and ammonia gas flow rates) to obtain high-quality oxynitride particles that efficiently function as photocatalysts. However, this approach may suffer from undesirable changes in the physicochemical properties of the resulting oxynitride, leading to the lowering of the photocatalytic activity. Here, we show that it is possible to control the photocatalytic activity of Ruddlesden–Popper metastable layered oxynitride K2LaTa2O6N, obtained from the Dion–Jacobson phase KLaTa2O7 through a topochemical ammonolysis reaction, by controlling the quality of the KLaTa2O7 template. During the ammonolysis of KLaTa2O7, in the presence of K2CO3, to K2LaTa2O6N, the structural properties (e.g., degree of crystallinity and particle size) of the oxide precursor were replicated in the resulting oxynitride. Namely, the use of KLaTa2O7, possessing a higher degree of crystallinity, led to larger K2LaTa2O6N particles being formed. By increasing the crystallinity of KLaTa2O7, the photocatalytic activity of the resulting K2LaTa2O6N for H2 evolution was improved for reaction in aqueous NaI solution under visible light irradiation. This improvement in performance was due to the longer lifetime of the photogenerated mobile electrons in high-crystallinity K2LaTa2O6N compared with that in the low-crystallinity analogue, as confirmed by femtosecond transient absorption spectroscopy. However, the photocatalytic activity of K2LaTa2O6N derived from well-grown larger KLaTa2O7 particles was an order of magnitude lower than that of the best-performing material. Physicochemical measurements revealed that the large K2LaTa2O6N particles contained a relatively high density of anionic defects on the surface, which shortened the lifetime of the photogenerated charge carriers, leading to lower photocatalytic activity.
Mixed-anion compounds have recently attracted attention as solid-state materials that exhibit properties unattainable with those of their single-anion counterparts. However, the use of mixed-anion compounds to control the morphology and engineer the crystal facets of electrocatalysts has been limited because their synthesis method is still immature. This study explored the electrocatalytic properties of a Pb–Fe oxyfluoride, Pb3Fe2O5F2, with a layered perovskite structure for oxygen evolution reaction (OER) and compared its properties in detail with those of a bulk-type cubic three-dimensional (3D) perovskite, PbFeO2F. A Pb3Fe2O5F2 electrode prepared with carbon nanotubes and a graphite sheet as a conductive support and a substrate, respectively, demonstrated better OER performance than a PbFeO2F electrode. The role of specific crystal facets of Pb3Fe2O5F2 in enhancing the OER activity was elucidated through electrochemical analysis. Density functional theory calculations indicated that the Pb3Fe2O5F2 (060) facet with Fe sites exhibited a lower theoretical overpotential for the OER, which was attributed to a moderately strong interaction between the active sites and the reaction intermediates; this interaction was reinforced by the strong electron-withdrawing behavior of fluoride ions. This finding offers new insights for developing efficient electrocatalysts based on oxyfluorides, leveraging the high electronegativity of fluorine to optimize the electronic states at active sites for the OER, without relying on precious metals.
CuInS2 quantum dots have been studied in a broad range of applications, but despite this, the fine details of their charge carrier dynamics remain a subject of intense debate. Two of the most relevant points of discussion are the hole dynamics and the influence of Cu:In synthesis stoichiometry on them. It has been proposed that Cu-deficiency leads to the formation of Cu2+, affecting the localization of holes into Cu defects. Importantly, it is precisely these confined hole states which are used to explain the interesting photoluminescence properties of CuInS2 quantum dots. We use static X-ray spectroscopy to reveal no evidence for a measurable amount of native Cu2+ states in Cu-deficient samples. Instead, the improved properties of these samples are explained by an increase of crystallinity, reducing the concentration of mid gap states. Furthermore, to understand the charge carrier dynamics, herein we employ ultrafast optical transient absorption, and fluorescence up-conversion spectroscopies in combination with ultrafast X-ray absorption spectroscopy using a hard X-ray free electron laser. We demonstrate that in non-passivated samples, holes are transferred from Cu atoms in sub-picosecond timescales. We assign this transfer to occur towards the thiol-based ligands. Finally, we observe that Cu-deficient samples are more robust against the photothermal heating effects of using higher laser fluences. This is not the case for the stoichiometric sample, where heating effects on the structure are directly observed.