Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein‐alpha (sAPPα), the product of α‐secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL‐6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism‐like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL‐6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild‐type mice treated with sAPPα, displayed suppressed β‐tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment.
Purpose Secretory carcinoma (SC) of the breast is defined as an indolent tumor but is still categorized into a basal‐like triple‐negative breast cancer (BL‐TNBC) subgroup that generally shows aggressive behavior according to the current classification. Despite the unique clinical behavior of SC, molecular characteristics that reflect biological behaviors of SC remain largely unknown. Experimental design A combinatorial approach of whole‐exome sequencing and mass spectrometry–based in‐depth quantitative proteomics to determine the entire molecular landscape of SC using three SC formalin‐fixed paraffin‐embedded (FFPE) tissues is employed. Results Exome sequencing and proteomic analysis of SC identified 419 unique somatic mutations and 721 differentially expressed proteins as compared with triple‐negative breast cancer (TNBC), respectively. Several pathways related to cancer metabolism were significantly upregulated in the SC group. Comparative analyses with multiple datasets revealed that SC shares genomic mutations and biological pathways more closely related to hormone receptor–positive breast cancer than BL‐TNBC. Conclusion and clinical relevance These multi‐omic analyses provide evidence that SC harbors substantially different molecular genomic and proteomic landscapes compared with BL‐TNBC. These results provide an entire spectrum of in‐depth molecular landscapes to support the hypothesis that SC is distinct from BL‐TNBC.
Autonomic dysregulation is associated with cardiovascular consequences in obstructive sleep apnea (OSA). This study aimed to investigate the effect of acute continuous positive airway pressure (CPAP) treatment on autonomic activity and to identify factors contributing to the heart rate variability (HRV) changes in OSA. Frequency domain HRV parameters were calculated and compared between the baseline polysomnography and during the CPAP titration in 402 patients with moderate to severe OSA. There were significant reductions in total power, very low-frequency band power, low-frequency band power, and high-frequency band power during the CPAP titration as compared to the baseline polysomnography. This tendency was more pronounced in men than in women, and in patients with severe OSA than those with moderate OSA. Multivariate analysis found that changes in apnea-hypopnea index and oxygen saturation were significantly associated with changes in sympathetic and parasympathetic activity, respectively. This study demonstrated that HRV parameters significantly changed during the CPAP titration, indicating a beneficial effect of CPAP in restoration of sympathetic and parasympathetic hyperactivity in OSA. Prospective longitudinal studies should determine whether long-term CPAP treatment aids in maintaining the long-lasting improvement of the autonomic functions, thereby contributing to the prevention of cardiovascular and cerebrovascular diseases in patients with OSA.
The superoxide dismutase (SOD) family functions as a reactive oxygen species (ROS)-scavenging system by converting superoxide anions into hydrogen peroxide in the cytosol (SOD1), mitochondria (SOD2), and extracellular matrix (SOD3). In this study, we examined the potential roles of SOD family members in skin aging. We found that SOD3 expression levels were significantly more reduced in the skin tissues of old mice and humans than in young counterparts, but SOD1 and SOD2 expression levels remained unchanged with aging. Accordingly, we analyzed the effects of SOD3 on intracellular ROS levels and the integrity of the extracellular matrix in fibroblasts. The treatment of foreskin fibroblasts with recombinant SOD3 reduced the intracellular ROS levels and secretion of MMP-1 while increasing the secretion of type I collagen. The effects of SOD3 were greater in fibroblasts treated with the TNF-α. SOD3 treatment also decreased the mRNA levels and promoter activity of MMP-1 while increasing the mRNA levels and promoter activities of COL1A1 and COL1A2. SOD3 treatment reduced the phosphorylation of NF-κB, p38 MAPK, ERK, and JNK, which are essential for MMP-1 transactivation. In a three-dimensional culture of fibroblasts, SOD3 decreased the amount of type I collagen fragments produced by MMP-1 and increased the amount of nascent type I procollagen. These results demonstrate that SOD3 reduces intracellular ROS levels, suppresses MMP-1 expression, and induces type I collagen expression in fibroblasts. Therefore, SOD3 may play a role in delaying or preventing skin aging.
Alzheimer's disease (AD) is one of the most common forms of dementia and is characterized by neuroinflammation and amyloidogenesis. Here we investigated the effects of KRICT-9 on neuroinflammation and amyloidogenesis in in vitro and in vivo AD models. We found that KRICT-9 decreased lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells and astrocytes while reducing nitric oxide generation and expression of inflammatory marker proteins (iNOS and COX-2) as well as APP, BACE1, C99, Iba-1, and GFAP. KRICT-9 also inhibited β-secretase. Pull-down assays and docking model analyses indicated that KRICT-9 binds to the DNA binding domain of signal transducer and activator of transcription 3 (STAT3). KRICT-9 also decreased β-secretase activity and Aβ levels in tissues from LPS-induced mice brains, and it reversed memory impairment in mice. These experiments demonstrated that KRICT-9 protects against LPS-induced neuroinflammation and amyloidogenesis by inhibiting STAT3 activity. This suggests KRICT-9 or KRICT-9-inspired reagents could be used as therapeutic agents to treat AD.
Recent morphometric magnetic resonance imaging (MRI) studies suggested the possibility that valproate (VPA) use is associated with parieto-occipital cortical thinning in patients with heterogeneous epilepsy syndromes. In this study, we examined the effect of VPA on the brain volume using a large number of homogenous patients with idiopathic generalized epilepsy. Voxel-based morphometry was used to compare regional gray matter (GM) volume between 112 patients currently taking VPA (VPA+ group), 81 patients not currently taking VPA (VPA- group), and 120 healthy subjects (control group). The VPA+ group showed a significant GM volume reduction in the bilateral cerebellum, hippocampus, insula, caudate nucleus, medial frontal cortex/anterior cingulate cortex, primary motor/premotor cortex, medial occipital cortex, and anteromedial thalamus, as compared to the control group. The VPA- group showed a significant GM volume reduction in the anteromedial thalamus and right hippocampus/temporal cortex, as compared to the control group. Compared to the VPA- group, the VPA+ group had a significant GM volume reduction in the bilateral cerebellum, primary motor/premotor cortex, and medial frontal cortex/anterior cingulate cortex. We have provided evidence that VPA use could result in GM volume reductions in the frontal cortex and cerebellum. Our findings should be acknowledged as a potential confounding factor in morphometric MRI studies that include subjects taking VPA.