D3 or complete mesocolic excision (CME) surgery has become a common surgical procedure for the treatment of colon cancer metastasis. Clinical misuse and overuse of lymph node dissection bring unnecessary burdens to patients. A detailed guidance for lymph node dissection in patients with T3 and T4 stage right colon cancer at different locations is urgently needed.A retrospective study was performed. Patients received D3 or CME surgery were divided into ileocecal group, ascending colon group, and hepatic flexure group according to the 9th edition of the Japanese Society for Cancer of the Colon and Rectum guidelines. The distributions of lymph node metastases were analyzed according to tumor infiltration depth (T stage) and tumor location.The incidence of metastases in the paracolic area (or station), intermediate area, and main (or central) area was 38.4% (139/362), 12.7% (46/362), and 9.7% (35/362), respectively. The proportion of patients having No.206 and terminal ileum lymph nodes metastases was 7.7% (14/181) and 3.7% (9/244), respectively. No.206 lymph node metastasis is related to tumor location (χ2 = 7.955, p = 0.019) and degree of differentiation (χ2 = 18.99, p = 0.000), and terminal ileum lymph node metastasis is related to tumor location (χ2 = 6.273, p = 0.043). Patients with T3/T4 hepatic flexure cancer received radical right hemicolectomy in addition to No.206 lymph node dissection.Radical right hemicolectomy and No.206 group lymph node dissection are necessary for T3 and T4 stage colon cancer therapy.
Background: Laparoscopic resection is increasingly used in colorectal cancer (CRC). It has been suggested to carry short-term benefits in safety, recovery, and preservation on immune function for patients with CRC. However, the impact of laparoscopic resection on natural killer (NK) cells is largely unclear. Methods: A total of 200 patients with CRC across Dukes A/B/C stages were randomly assigned to laparoscopic or open resection. The blood samples were collected before and after the surgery. The total number of NK cells was quantified by flow cytometer. Lytic units 35 toward K562 was used to quantify NK cells activity. The outcomes between the groups across pathological stages were also analyzed. Results: The number and activity of NK cells decreased after the surgery in both groups. The laparoscopic group showed a faster recovery rate of NK cells function than the control group as assessed by cell count and lytic activity. Natural killer cells were impaired in a higher degree in patients at Dukes B/C stages. The recovery of NK cells to baseline level at day 7 postsurgery was observed in the laparoscopic group across all 3 stages. Conclusion: Generally, laparoscopically assisted surgery resulted in a better preservation on NK cells function. A better outcome was observed in patients with CRC at Dukes B/C stages.
Homoharringtonine (HHT) exhibits an anti-inflammatory activity. The potential protective effects and mechanisms of HHT on dextran sulfate sodium- (DSS-) induced colitis were investigated. DSS-induced colitis mice were intraperitoneally injected with HHT. Body weight, colon length, disease activity index (DAI), and histopathological change were examined. The relative contents of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, and the chemokine (C-C motif) ligand 2 (CCL2) in the colon tissues and HHT-treated RAW264.7 cells were detected with the enzyme-linked immunosorbent assay. In the meantime, the levels of p-p65 and p-IκBα were detected by Western blot. The proportion of macrophages (CD11b+F4/80+) in the colon tissues was detected by flow cytometry. HHT alleviated DSS-induced colitis with downregulated TNF-α, IL-1β, IL-6, and CCL2 expression; reduced activation of nuclear factor-kappa B (NF-κB) signaling; and diminished proportion of recruited macrophages in colon tissues. It was further testified that HHT inhibited lipopolysaccharide-induced macrophage activation with reduced activation of NF-κB signaling. In addition, HHT inhibited the M1 polarization of both human and mouse macrophages, while HHT did not affect the differentiation of human CD4 T cells into Th17, Th1, or Treg cells and did not affect the proliferation and migration of human colon epithelial cells. In summary, HHT attenuates DSS-induced colitis by inhibiting macrophage-associated NF-κB activation and M1 polarization, which could be an option for the treatment of ulcerative colitis.
Colorectal cancer (CRC) is a prevalent malignancy with high morbidity and mortality rates globally. Advances in single-cell sequencing technology have enabled comprehensive analyses of tumor cells at single-cell resolution, providing valuable insights into the molecular mechanisms underlying CRC initiation and progression. In this study, we integrated single-cell sequencing data with the TCGA database to identify key molecular pathways involved in CRC pathogenesis. Our analysis revealed that dysregulation of phospholipid metabolism, particularly sphingolipid metabolism, plays a crucial role in CRC development. Specifically, we observed aberrant expression of genes involved in sphingolipid biosynthesis and degradation, as well as altered levels of various sphingolipid metabolites in CRC cells. Furthermore, we identified several potential therapeutic targets, including SMPD1, GLTP, B3GALT4, and ST8SIA6, within the sphingolipid metabolism pathway that could be exploited for the development of novel CRC treatments. Overall, our findings provide novel insights into the molecular mechanisms underlying CRC and highlight the importance of targeting phospholipid metabolism, specifically sphingolipid metabolism, as a potential therapeutic strategy for CRC.
Human epididymis protein 4 (HE4) was significantly up-regulated in colorectal cancer (CRC), while the potential relevance to radiation resistance of this phenomenon is still elusive. Relative expressions of target genes were quantified by real-time PCR. The protein level was determined by Western blot. The regulatory effect of miR-149 on WFDC2 (gene encoding HE4 protein) expression was analyzed by luciferase reporter assay. The response to radiation was evaluated by clonogenic assay in vitro and xenograft growth in vivo. WFDC2 was aberrantly up-regulated and miR-149 was down-regulated in CRC. MiR-149 repressed WFDC2 expression via directly targeting its 3'UTR region. The ectopic expression of miR-149 significantly sensitized CRC to radiation both in vitro and in vivo. Likewise, we further demonstrated that WFDC2-deficiency remarkably improved the radiation resistance in CRC. Simultaneously, WFDC2 rescue completely abolished the radiation sensitivity imposed by miR-149. Our data suggested that miR-149 sensitized CRC to radiation via directly inhibiting WFDC2/HE4, which would hold great promise for future therapeutic exploitations.
Skeletal muscle is the primary organ involved in insulin-mediated glucose metabolism. Elevated levels of CILP2 are a significant indicator of impaired glucose tolerance and are predominantly expressed in skeletal muscle. It remains unclear whether CILP2 contributes to age-related muscle atrophy through regulating the glucose homeostasis and insulin sensitivity.