Although glutathione (GSH) and GSH-dependent enzymes, such as glutathione transferases (GSTs), are thought to have been developed by cyanobacteria to cope with the reactive oxygen species (ROS) that they massively produced by their active photosynthesis, there had been no in vivo analysis of the role of GSTs in cyanobacteria so far. Consequently, we have analyzed two of the six GSTs of the model cyanobacterium Synechocystis PCC 6803, namely Sll1545 (to extend its in vitro study) and Slr0236 (because it is the best homolog to Sll1545). We report that Sll1545 is essential to cell growth in standard photo-autotrophic conditions, whereas Slr0236 is dispensable. Furthermore, both Sll1545 and Slr0236 operate in the protection against stresses triggered by high light, H2O2, menadione and methylene blue. The absence of Slr0236 and the depletion of Sll1545 decrease the tolerance to methylene blue in a cumulative way. Similarly, the combined absence of Slr0236 and depletion of Sll1545 decrease the resistance to high light. Attesting their sensitivity to high-light or methylene blue, these Δslr0236-sll1545 cells transiently accumulate ROS, and then reduced and oxidized glutathione in that order. In contrast, the absence of Slr0236 and the depletion of Sll1545 increase the tolerance to menadione in a cumulative way. This increased menadione resistance is due, at least in part, to the higher level of catalase and/or peroxidase activity of these mutants. Similarly, the increased H2O2 resistance of the Δslr0236-sll1545 cells is due, at least in part, to its higher level of peroxidase activity.
Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Some animals asymptomatically carry L. interrogans in their kidneys and excrete bacteria in their urine, which contaminates the environment. Humans are infected through skin contact with leptospires and develop mild to severe leptospirosis. Previous attempts to construct fluorescent or bioluminescent leptospires, which would permit in vivo visualization and investigation of host defense mechanisms during infection, have been unsuccessful. Using a firefly luciferase cassette and random transposition tools, we constructed bioluminescent chromosomal transformants in saprophytic and pathogenic leptospires. The kinetics of leptospiral dissemination in mice, after intraperitoneal inoculation with a pathogenic transformant, was tracked by bioluminescence using live imaging. For infective doses of 106 to 107 bacteria, we observed dissemination and exponential growth of leptospires in the blood, followed by apparent clearance of bacteria. However, with 2×108 bacteria, the septicemia led to the death of mice within 3 days post-infection. In surviving mice, one week after infection, pathogenic leptospires reemerged only in the kidneys, where they multiplied and reached a steady state, leading to a sustained chronic renal infection. These experiments reveal that a fraction of the leptospiral population escapes the potent blood defense, and colonizes a defined number of niches in the kidneys, proportional to the infective dose. Antibiotic treatments failed to eradicate leptospires that colonized the kidneys, although they were effective against L. interrogans if administered before or early after infection. To conclude, mice infected with bioluminescent L. interrogans proved to be a novel model to study both acute and chronic leptospirosis, and revealed that, in the kidneys, leptospires are protected from antibiotics. These bioluminescent leptospires represent a powerful new tool to challenge mice treated with drugs or vaccines, and test the survival, dissemination, and transmission of leptospires between environment and hosts.
In most organisms, methylglyoxal (MG), a toxic metabolite by-product that causes diabetes in humans, is predominantly detoxified by the glyoxalase enzymes. This process begins with the so-called “spontaneous” conjugation of MG with the cytoprotectant metabolite glutathione (GSH). In this study, we unravel a logical, but as yet unsuspected, link between MG detoxification and a (prokaryotic) representative of the ubiquitous glutathione transferase (GST) enzymes. We show that a GST of a model cyanobacterium plays a prominent role in the detoxification of MG in catalyzing its conjugation with GSH. This finding is important because this reaction, always regarded as nonenzymatic, could exist in plants and/or human and thus have an impact on agriculture and/or human health.
Grâce a leur puissante photosynthese, les cyanobacteries utilisent l’energie solaire, le CO₂ atmospherique et l’eau (meme polluee) pour proliferer (elles colonisent la planete depuis 2 a 3 milliard d'annees) et produire une grande partie de la biomasse et de l'oxygene (O₂) necessaire a la chaine alimentaire. Elles peuvent aussi etre modifiees pour la production de composes d’interet (biocarburants, bioplastiques biodegradable, molecules anti-oxydantes…). Cependant, les cyanobacteries sont continuellement confrontees aux stress (brutales variations de lumiere et de temperature, carence ou exces de metaux et mineraux…). Ainsi, l'analyse des reponses aux stress (notamment photo-oxydant genere par la photosynthese) a donc un double objectif : (i) le premier, fondamental, vise a ameliorer nos connaissances sur ces processus encore mal connus et (ii) le second, applique, vise a accroitre la tolerance des cyanobacteries aux stress et aux composes que l’on souhaite leur faire produire. Pour repondre a divers stress, les cyanobacteries ont invente le « systeme glutathion », qui a ete conserve par l'evolution jusqu’a l'homme. Ce systeme est base sur le glutathion (GSH), un tripeptide qui peut se conjuguer sur de nombreux toxiques (grâce notamment aux enzymes glutathion-S-transferases (GST)) et sert de reducteurs a d'autres enzymes (glutaredoxines, glutathion peroxydases…). Pour analyser la redondance/selectivite des GST, qui est mal connue, j'ai utilise la cyanobacterie modele Synechocystis PCC 6803 car elle est unicellulaire (pas de differenciation cellulaire et tissulaire), et elle possede un petit genome entierement sequence et facilement manipulable (grâce aux outils du laboratoire). Ma these decrit l'analyse des six GST de Synechocystis PCC 6803 (leurs orthologues sont presents chez la plante et l'homme) par une approche genetique (deletion/surexpression des genes gst); physiologique (sensibilite/resistance a divers stress); et biochimique (dosage de molecules oxydantes, de glutathion et d'activite enzymatiques). Ainsi, j’ai demontre pour la premiere fois: (i) qu'une GST joue un role central dans la tolerance aux stress thermique et (ii) qu'une autre GST joue un role preponderant dans la detoxication du methylglyoxal, un metabolique toxique issus du catabolisme du glucose qui s'accumule dans les cellules diabetiques et deregle leur fonctionnement. Ces resultats sont discutes au regard des connaissances actuelles sur les GST et leur classification dans le regne du vivant. Ils sont presentes dans trois manuscrits d'articles (un est soumis pour publication, deux sont en cours d'ecriture).
Cyanobacteria, the largest phylum of prokaryotes, perform oxygenic photosynthesis and are regarded as the ancestors of the plant chloroplast and the purveyors of the oxygen and biomass that shaped the biosphere. Nowadays, cyanobacteria are attracting a growing interest in being able to use solar energy, H2O, CO2 and minerals to produce biotechnologically interesting chemicals. This often requires the introduction and expression of heterologous genes encoding the enzymes that are not present in natural cyanobacteria. However, only a handful of model strains with a well-established genetic system are being studied so far, leaving the vast biodiversity of cyanobacteria poorly understood and exploited. In this study, we focused on the robust unicellular cyanobacterium Cyanothece PCC 7425 that has many interesting attributes, such as large cell size; capacity to fix atmospheric nitrogen (under anaerobiosis) and to grow not only on nitrate but also on urea (a frequent pollutant) as the sole nitrogen source; capacity to form CO2-sequestrating intracellular calcium carbonate granules and to produce various biotechnologically interesting products. We demonstrate for the first time that RSF1010-derived plasmid vectors can be used for promoter analysis, as well as constitutive or temperature-controlled overproduction of proteins and analysis of their sub-cellular localization in Cyanothece PCC 7425. These findings are important because no gene manipulation system had been developed for Cyanothece PCC 7425, yet, handicapping its potential to serve as a model host. Furthermore, using this toolbox, we engineered Cyanothece PCC 7425 to produce the high-value terpene, limonene which has applications in biofuels, bioplastics, cosmetics, food and pharmaceutical industries. This is the first report of the engineering of a Cyanothece strain for the production of a chemical and the first demonstration that terpene can be produced by an engineered cyanobacterium growing on urea as the sole nitrogen source.
The MAPEG2 sub-family of glutathione-S-transferase proteins (GST) has been poorly investigated in vivo, even in prokaryotes such as cyanobacteria the organisms that are regarded as having developed glutathione-dependent enzymes to protect themselves against the reactive oxygen species often produced by their powerful photosynthesis. We report the first in vivo analysis of a cyanobacterial MAPEG2-like protein (Sll1147) in the model cyanobacterium Synechocystis PCC 6803. While Sll1147 is dispensable to cell growth in standard photo-autotrophic conditions, it plays an important role in the resistance to heat and cold, and to n-tertbutyl hydroperoxide (n-tBOOH) that induces lipid peroxidation. These findings suggest that Sll1147 could be involved in membrane fluidity, which is critical for photosynthesis. Attesting its sensitivity to these stresses, the Δsll1147 mutant lacking Sll1147 challenged by heat, cold or n-tBOOH undergoes transient accumulation of peroxidized lipids and then of reduced and oxidized glutathione. These results are welcome because little is known concerning the signaling and/or protection mechanisms used by cyanobacteria to cope with heat and cold, two inevitable environmental stresses that limit their growth and thus their production of biomass for our food chain and of biotechnologically interesting chemicals. Also interestingly, the decreased resistance to heat, cold and n-tBOOH of the sll1147 mutant could be rescued back to normal (wild-type) levels upon the expression of synthetic MAPEG2-encoding human genes adapted to the cyanobacterial codon usage. These synthetic hmGST2 and hmGST3 genes were also able to increase the E. coli tolerance to heat and n-tBOOH. Collectively, these finding indicate that the activity of the MAPEG2 proteins have been conserved, at least in part, during evolution from (cyano)bacteria to human.