A polarized bidirectional reflectance distribution function (pBRDF) matrix is developed from two-scale roughness theory with the aim of providing more accurate simulations of microwave emissions and scattering required for ocean–atmosphere coupled radiative transfer models. The potential of the pBRDF matrix is explored for simulating the ocean backscatter at Ku-band. The effects of ocean wave spectra including the modified Durden and Vesecky (DV2), Elfouhaily, and Kudryavtsev spectra on the pBRDF matrix backscatter simulations are investigated. Additionally, the differences in backscattering normalized radar cross-section (NRCS) simulations between the Ku-band geophysical model function and pBRDF matrix are analyzed. The results show that the pBRDF matrix can reasonably reproduce the spatial distribution of ocean surface backscattering energy, but the distribution pattern and numerical values are influenced by ocean wave spectra. The DV2 spectrum is the best one for the pBRDF matrix to simulate horizontally polarized NRCSs, with the exception of scenarios where the incidence angle is below 35°, the wind speed is less than 10 m s−1, and in the cross-wind direction. Also, the DV2 spectrum effectively characterizes the wind speed and relative azimuth angle dependence for vertically polarized NRCSs. The Elfouhaily spectrum is suitable for simulating vertically polarized NRCSs under conditions of low wind speed (below 5 m s−1) and incidence angles under 40°. The Kudryavtsev spectrum excels in simulating vertically polarized NRCSs at high incidence angles (> 40°) and horizontally polarized NRCSs at low incidence angles (< 35°). 为提供微波海洋-大气耦合辐射传输模型所需的精确发射和散射, 基于双尺度粗糙度理论发展了极化双向反射分布函数 (pBRDF) 矩阵.本研究探讨了pBRDF矩阵是否能够表征ku波段洋面后向散射, 对比了三种常用海浪谱模型对pBRDF矩阵后向散射模拟的影响, 分析了ku波段地球物理模型函数 (GMF) 与pBRDF矩阵在后向散射归一化雷达截面 (NRCS) 模拟中的差异.结果表明, pBRDF矩阵能够准确再现洋面后向散射能量的空间分布, 但后向散射能量分布受海浪谱影响较大.
The PHOSPHATE1 (PHO1) gene family plays diverse roles in inorganic phosphate (Pi) transfer and signal transduction, and plant development. However, the functions and diversification of soybean PHO1 family are poorly understood.Cultivated soybean (Glycine max) was domesticated from wild soybean (Glycine soja). To illuminate their roles in this evolutionary process, we comparatively investigated the G. max PHO1 genes (GmPHO1) in Suinong 14 (SN14) and G. soja PHO1 genes (GsPHO1) in ZYD00006 (ZYD6). The sequences of the orthologous Gm-GsPHO1 pairs were grouped into two Classes. The expression of Class I in both SN14 and ZYD6 was widely but relatively high in developing fruits, whereas Class II was predominantly expressed in the roots. The whole family displayed diverse response patterns to salt stresses and Pi-starvation in roots. Between SN14 and ZYD6, most PHO1 genes responded similarly to salinity stresses, and half had sharp contrasts in response to Pi-starvation, which corroborated the differential response capacities to salinity and low-Pi stress between SN14 and ZYD6. Furthermore, in transgenic Arabidopsis plants, most Class II members and GmPHO1;H9 from Class I could enhance salt tolerance, while only two Class II genes (GmPHO1;H4 and GmPHO1;H8) differently altered sensitivity to Pi-starvation. The expression of critical genes was accordingly altered in either salt or Pi signaling pathways in transgenic Arabidopsis plants.Our work identifies some PHO1 genes as promising genetic materials for soybean improvement, and suggests that expression variation is decisive to functional divergence of the orthologous Gm-GsPHO1 pairs, which plays an adaptive role during soybean evolution.
The rapid cultivation of partial nitritation/ANAMMOX (PN/A) granular sludge in a continuous-flow mode is one of the key technologies for efficient biological nitrogen removal in domestic wastewater treatment. Compared with that in PN/A granular sludge, PN granular sludge demonstrates a shorter incubation period and suitability for batch culture. It is also a good carrier for enriching ANAMMOX (AMX) bacteria. In this study, we established a continuous-flow autotrophic nitrogen removal process in three continuously stirred tank reactors (CSTR) (R1-R3) by hybrid-inoculating PN/A and PN granular sludge at the mass ratios of 3∶1, 1∶1, and 1∶3, respectively. By implementing high ammonium nitrogen loading and short hydraulic retention time, continuous autotrophic nitrogen removal processes were successfully started up in the three CSTRs. The results showed that compared with that of R1 and R2, R3 had a longer start-up time but a similar steady-state nitrogen removal performance. The total nitrogen removal load of R3 could be more than 2.6 kg·(m
Abstract Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and OSE stem cells rapidly generate new cells for the repair. How the stem cell senses the rupture and promptly turns on proliferation is unclear. Our previous study has identified that Protein C Receptor (Procr) marks OSE progenitors. In this study, we observed decreased adherent junction and selective activation of YAP signaling in Procr progenitors at OSE rupture site. OSE repair is impeded upon deletion of Yap in these progenitors. Interestingly, Procr+ progenitors show lower expression of Vgll4, an antagonist of YAP signaling. Overexpression of Vgll4 in Procr+ cells hampers OSE repair and progenitor proliferation, indicating that selective low Vgll4 expression in Procr+ progenitors is critical for OSE repair. In addition, YAP activation promotes transcription of the OSE stemness gene Procr . The combination of increased cell division and Procr expression leads to expansion of Procr+ progenitors surrounding the rupture site. These results illustrate a YAP- dependent mechanism by which the stem/progenitor cells recognize the ovulatory rupture, and rapidly multiply their numbers, highlighting a YAP- induced stem cell expansion strategy.