Advanced spark ignition engines require high performance fuels with improved resistance to autoignition. Biologically derived olefinic alcohols have arisen as promising blendstock candidates due to favorable octane numbers and synergistic blending characteristics. However, production and downstream separation of these alcohols are limited by their intrinsic toxicity and high aqueous solubility, respectively. Bioproduction of carboxylate esters of alcohols can improve partitioning and reduce toxicity, but in practice has been limited to saturated esters with characteristically low octane sensitivity. If olefinic esters retain the synergistic blending characteristics of their alcohol counterparts, they could improve the bioblendstock combustion performance while also retaining the production advantages of the ester moiety.Optimization of Escherichia coli isoprenoid pathways has led to high titers of isoprenol and prenol, which are not only excellent standalone biofuel and blend candidates, but also novel targets for esterification. Here, a selection of olefinic esters enhanced blendstock performance according to their degree of unsaturation and branching. E. coli strains harboring optimized mevalonate pathways, thioester pathways, and heterologous alcohol acyltransferases (ATF1, ATF2, and SAAT) were engineered for the bioproduction of four novel olefinic esters. Although prenyl and isoprenyl lactate titers were limited to 1.48 ± 0.41 mg/L and 5.57 ± 1.36 mg/L, strains engineered for prenyl and isoprenyl acetate attained titers of 176.3 ± 16.0 mg/L and 3.08 ± 0.27 g/L, respectively. Furthermore, prenyl acetate (20% bRON = 125.8) and isoprenyl acetate (20% bRON = 108.4) exhibited blend properties comparable to ethanol and significantly better than any saturated ester. By further scaling cultures to a 2-L bioreactor under fed-batch conditions, 15.0 ± 0.9 g/L isoprenyl acetate was achieved on minimal medium. Metabolic engineering of acetate pathway flux further improved titer to attain an unprecedented 28.0 ± 1.0 g/L isoprenyl acetate, accounting for 75.7% theoretical yield from glucose.Our study demonstrated novel bioproduction of four isoprenoid oxygenates for fuel blending. Our optimized E. coli production strain generated an unprecedented titer of isoprenyl acetate and when paired with its favorable blend properties, may enable rapid scale-up of olefinic alcohol esters for use as a fuel blend additive or as a precursor for longer-chain biofuels and biochemicals.
Persistence is a phenomenon whereby a subpopulation of bacterial cells enters a transient growth-arrested state that confers antibiotic tolerance. While entrance into persistence has been linked to the activities of toxin proteins, the molecular mechanisms by which toxins induce growth arrest and the persistent state remain unclear. Here, we show that overexpression of the protein kinase HipA in Escherichia coli triggers growth arrest by activating synthesis of the alarmone guanosine tetraphosphate (ppGpp) by the enzyme RelA, a signal typically associated with amino acid starvation. We further demonstrate that chemically suppressing ppGpp synthesis with chloramphenicol relieves inhibition of DNA replication initiation and RNA synthesis in HipA-arrested cells and restores vulnerability to β-lactam antibiotics. HipA-arrested cells maintain glucose uptake and oxygen consumption and accumulate amino acids as a consequence of translational inhibition. We harness the active metabolism of HipA-arrested cells to provide a bacteriophage-resistant platform for the production of biotechnologically relevant compounds, which may represent an innovative solution to the costly problem of phage contamination in industrial fermentations.
The Purpose of this study was to investigate the effect of the Change in the operating conditions on rotary turning compost plants. The major parameters investigated were moisture content and mixing of the sawdust and pig farm wastewater. Pig farm scale composting plants with mixing rotary were used in this study. Wastes used for the study were sawdust, pig manure, urine and wastewater. When the moisture content was 75%, the compost product obtained from the plants had better physical characteristics than that obtained from the plants with moisture contents of 70%, 80% and 85%.(two a day mixing). When the turning was twice a day, the compost product obtained from the plants had better characteristics than that obtained from non-mixing.(moisture content 75%). C/N ratio, pH value and coliform bacterial population were stable in the compost.
Abstract Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane), and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the “IPP-bypass” pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.
Advances in synthetic biology have radically changed our ability to rewire microorganisms and significantly improved the scalable production of a vast array of drop-in biopolymers and biofuels. The success of a drop-in bioproduct is contingent on market competition with petrochemical analogues and weighted upon relative economic and environmental metrics. While the quantification of comparative trade-offs is critical for accurate process-level decision making, the translation of industrial ecology to synthetic biology is often ambiguous and assessment accuracy has proven challenging. In this review, we explore strategies for evaluating industrial biotechnology through life cycle and techno-economic assessment, then contextualize how recent developments in synthetic biology have improved process viability by expanding feedstock availability and the productivity of microbes. By juxtaposing biological and industrial constraints, we highlight major obstacles between the disparate disciplines that hinder accurate process evaluation. The convergence of these disciplines is crucial in shifting towards carbon neutrality and a circular bioeconomy.