Abstract. The late Taro Takahashi (LDEO/Columbia University) provided the first near-global monthly air-sea CO2 flux climatology in Takahashi et al. (1997), based on available surface water partial pressure of CO2 measurements. This product has been a benchmark for uptake of CO2 in the ocean. Several versions have been provided since, with improvements in procedures and large increases in observations, culminating in the authoritative assessment in Takahashi et al. (2009). Here we provide and document the last iteration using a greatly increased dataset (SOCATv2022) and determining fluxes using air-sea partial pressure differences as a climatological reference for the period 1980–2021. The resulting net flux for the open ocean region is estimated as -1.79 PgC yr-1 which compares well with other global mean flux estimates. While global flux results are consistent, differences in regional means and seasonal amplitudes are discussed. Consistent with other studies, we find the largest differences in the data-sparse southeast Pacific and Southern Ocean.
Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and silicic acid concentrations change with time, as expected from a seasonally productive ecosystem. In winter, salinity-normalized nitrate and silicic acid concentrations (C*) in sea ice are close to seawater concentrations (Cw), indicating little or no biological activity. In spring, nitrate and silicic acid concentrations become partially depleted with respect to seawater (C* < Cw), commensurate with the seasonal build-up of ice microalgae promoted by increased insolation. Stronger and earlier nitrate than silicic acid consumption suggests that a significant fraction of the primary productivity in sea ice is sustained by flagellates. By both consuming and producing ammonium and nitrite, the microbial community maintains these nutrients at relatively low concentrations in spring. With the decrease in insolation beginning in late summer, dissolved inorganic nitrogen and silicic acid concentrations increase, indicating imbalance between their production (increasing or unchanged) and consumption (decreasing) in sea ice. Unlike the depleted concentrations of both nitrate and silicic acid from spring to summer, phosphate accumulates in sea ice (C* > Cw). The phosphate excess could be explained by a greater allocation to phosphorus-rich biomolecules during ice algal blooms coupled with convective loss of excess dissolved nitrogen, preferential remineralization of phosphorus, and/or phosphate adsorption onto metal-organic complexes. Ammonium also appears to be efficiently adsorbed onto organic matter, with likely consequences to nitrogen mobility and availability. This dataset supports the view that the sea ice microbial community is highly efficient at processing nutrients but with a dynamic quite different from that in oceanic surface waters calling for focused future investigations.
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.
Abstract. The late Taro Takahashi (LDEO/Columbia University) provided the first near-global monthly air-sea CO2 flux climatology in Takahashi et al. (1997), based on available surface water partial pressure of CO2 measurements. This product has been a benchmark for uptake of CO2 in the ocean. Several versions have been provided since, with improvements in procedures and large increases in observations, culminating in the authoritative assessment in Takahashi et al. (2009). Here we provide and document the last iteration using a greatly increased dataset (SOCATv2022) and determining fluxes using air-sea partial pressure differences as a climatological reference for the period 1980–2021. The resulting net flux for the open ocean region is estimated as -1.79 PgC yr-1 which compares well with other global mean flux estimates. While global flux results are consistent, differences in regional means and seasonal amplitudes are discussed. Consistent with other studies, we find the largest differences in the data-sparse southeast Pacific and Southern Ocean.
The Surface Ocean CO2 NETwork (SOCONET) and Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric marine boundary layers. The focus is on providing accurate pCO2 data to within 2 micro atmosphere (µatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network involving partners worldwide will enable production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis and aims to work closely with regional (coastal) networks and liaise with intergovernmental science organizations such as Global Atmosphere watch (GAW), and the joint WMO-IOC committee for and ocean and [marine] meteorology (JCO[M]M). Here we describe the details of this emerging network and its proposed operations and practices.
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesise data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) is estimated with global ocean biogeochemistry models and observation-based data-products. The terrestrial CO2 sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ± 0.5 GtC yr-1 (9.9 ± 0.5 GtC yr-1 when the cement carbonation sink is included), ELUC was 1.1 ± 0.7 GtC yr-1, for a total anthropogenic CO2 emission of 11.1 ± 0.8 GtC yr-1 (40.8 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr-1 (2.5 ± 0.1 ppm yr-1), SOCEAN was 2.9 ± 0.4 GtC yr-1 and SLAND was 3.5 ± 0.9 GtC yr-1, with a BIM of -0.6 GtC yr-1 (i.e. total estimated sources too low or sinks too high). The global atmospheric CO2 concentration averaged over 2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022, suggest an increase in EFOS relative to 2021 of +1.1 % (0 % to 1.7 %) globally, and atmospheric CO2 concentration reaching 417.3 ppm, more than 50 % above pre-industrial level. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2021, but discrepancies of up to 1 GtC yr-1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2022a; Friedlingstein et al., 2020; Friedlingstein et al., 2019; Le Quéré et al., 2018b, 2018a, 2016, 2015b, 2015a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b).
Abstract. The late Taro Takahashi (Lamont-Doherty Earth Observatory (LDEO), Columbia University) and colleagues provided the first near-global monthly air–sea CO2 flux climatology in Takahashi et al. (1997), based on available surface water partial pressure of CO2 measurements. This product has been a benchmark for uptake of CO2 in the ocean. Several versions have been provided since, with improvements in procedures and large increases in observations, culminating in the authoritative assessment in Takahashi et al. (2009a, b). Here we provide and document the last iteration using a greatly increased dataset (SOCATv2022) and determining fluxes using air–sea partial pressure differences as a climatological reference for the period 1980–2021 (Fay et al., 2023, https://doi.org/10.25921/295g-sn13). The resulting net flux for the open ocean region is estimated as -1.79±0.7 Pg C yr−1, which compares well with other global mean flux estimates. While global flux results are consistent, differences in regional means and seasonal amplitudes are discussed. Consistent with other studies, we find the largest differences in the data-sparse southeast Pacific and Southern Ocean.
Abstract We present a 13 year (2002–2015) semimonthly time series of the partial pressure of CO 2 in surface water ( p CO 2surf ) and other carbonate system parameters from the Drake Passage. This record shows a clear increase in the magnitude of the sea‐air p CO 2 gradient, indicating strengthening of the CO 2 sink in agreement with recent large‐scale analyses of the world oceans. The rate of increase in p CO 2surf north of the Antarctic Polar Front (APF) is similar to the atmospheric p CO 2 ( p CO 2atm ) trend, whereas the p CO 2surf increase south of the APF is slower than the p CO 2atm trend. The high‐frequency surface observations indicate that an absence of a winter increase in total CO 2 (TCO 2 ) and cooling summer sea surface temperatures are largely responsible for increasing CO 2 uptake south of the APF. Muted winter trends in surface TCO 2 also provide temporary stability to the carbonate system that is already close to undersaturation with respect to aragonite.