Abstract Sleep health is both conceptually and operationally a composite concept containing multiple domains of sleep. In line with this, high dependence and interaction across different domains of sleep health encourage a transition in sleep health research from categorical to dimensional approaches that integrate neuroscience and sleep health. Here, we seek to identify the covariance patterns between multiple-sleep health domains and distributed intrinsic functional connectivity by applying a multivariate approach (partial least squares). This multivariate analysis revealed a composite sleep health dimension co-varying with connectivity patterns involving the attentional and thalamic networks and which appear relevant at the neuromolecular level. These findings were further replicated and generalized to several unseen independent datasets. Critically, the identified sleep-health related connectome showed diagnostic potential for insomnia disorder. These results together delineate a brain connectome biomarker for sleep health with high potential for clinical translation.
Abstract Normal sleepers may be at risk for insomnia during COVID-19. Identifying psychological factors and neural markers that predict their insomnia risk, as well as investigating possible courses of insomnia development, could lead to more precise targeted interventions for insomnia during similar public health emergencies. Insomnia severity index of 306 participants before and during COVID-19 were employed to determine the development of insomnia, while pre-COVID-19 psychometric and resting-state fMRI data were used to explore corresponding psychological and neural markers of insomnia development. Normal sleepers as a group reported a significant increase in insomnia symptoms after COVID-19 outbreak (F = 4.618, P = 0.0102, df = 2, 609.9). Depression was found to significantly contribute to worse insomnia (β = 0.066, P = 0.024). Subsequent analysis found that functional connectivity between the precentral gyrus and middle/inferior temporal gyrus mediated the association between pre-COVID-19 depression and insomnia symptoms during COVID-19. Cluster analysis identified that postoutbreak insomnia symptoms followed 3 courses (lessened, slightly worsened, and developed into mild insomnia), and pre-COVID-19 depression symptoms and functional connectivities predicted these courses. Timely identification and treatment of at-risk individuals may help avoid the development of insomnia in the face of future health-care emergencies, such as those arising from COVID-19 variants.
Here we present a test-retest dataset of electroencephalogram (EEG) acquired at two resting (eyes open and eyes closed) and three subject-driven cognitive states (memory, music, subtraction) with both short-term (within 90 mins) and long-term (one-month apart) designs. 60 participants were recorded during three EEG sessions. Each session includes EEG and behavioral data along with rich samples of behavioral assessments testing demographic, sleep, emotion, mental health and the content of self-generated thoughts (mind wandering). This data enables the investigation of both intra- and inter-session variability not only limited to electrophysiological changes, but also including alterations in resting and cognitive states, at high temporal resolution. Also, this dataset is expected to add contributions to the reliability and validity of EEG measurements with open resource.
Abstract Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Emotional stress throughout the day is known to affect objective sleep physiology and subjective sleep quality. In the interplay between emotions and sleep, emotion regulation plays a critical role in the recovery from stressful, emotional events and subsequent sleep. While the effects of top-down emotion regulation strategies such as cognitive reappraisal on sleep have been studied before, the impact of bottom-up emotion regulation strategies such as experiential emotion regulation is understudied. Cognitive reappraisal reflects the cognitive reinterpretation of the meaning of a stressful event, while experiential emotion regulation involves an active, non-intervening, accepting, open and welcoming approach of acknowledging awareness of raw sensory affective experiences or 'experiential awareness' in a first phase and expression in a second phase. The present study aims to investigate the effects of experiential emotion regulation and cognitive reappraisal on the recovery from pre-sleep emotional stress measured by (1) negative affect and (2) sleep structure. Sleep of forty-three healthy Dutch-speaking participants (22 females, 21 males) has been assessed using EEG polysomnography. Stress was triggered using a pre-sleep emotional failure induction, after which emotion regulation by experiential emotion regulation versus cognitive reappraisal versus control was induced twice. The control condition consisted of the reallocation of attention towards the neutral aspects of the emotional event. The results indicated that recovery from negative affect of the failure experience after single or repeated deployment of experiential emotion regulation and cognitive reappraisal was not significantly different from the control condition. Moreover, after repeated deployment, sleep physiology did not significantly differ between experiential emotion regulation, cognitive reappraisal, and the control condition in the impact of the regulation of the failure experience. The implications of the distinctive impact of experiential emotion regulation and cognitive reappraisal on both the pre-sleep emotional experience and follow-up sleep physiology are discussed.
Abstract The univariate obesity–brain associations have been extensively explored, while little is known about the multivariate associations between obesity and resting-state functional connectivity. We therefore utilized machine learning and resting-state functional connectivity to develop and validate predictive models of 4 obesity phenotypes (i.e. body fat percentage, body mass index, waist circumference, and waist–height ratio) in 3 large neuroimaging datasets (n = 2,992). Preliminary evidence suggested that the resting-state functional connectomes effectively predicted obesity/weight status defined by each obesity phenotype with good generalizability to longitudinal and independent datasets. However, the differences between resting-state functional connectivity patterns characterizing different obesity phenotypes indicated that the obesity–brain associations varied according to the type of measure of obesity. The shared structure among resting-state functional connectivity patterns revealed reproducible neuroimaging biomarkers of obesity, primarily comprising the connectomes within the visual cortex and between the visual cortex and inferior parietal lobule, visual cortex and orbital gyrus, and amygdala and orbital gyrus, which further suggested that the dysfunctions in the perception, attention and value encoding of visual information (e.g. visual food cues) and abnormalities in the reward circuit may act as crucial neurobiological bases of obesity. The recruitment of multiple obesity phenotypes is indispensable in future studies seeking reproducible obesity–brain associations.
Obstructive sleep apnea syndrome (OSAS), a prevalent sleep disorder in children, is characterized by recurring upper airway obstruction during sleep. OSAS in children can cause intermittent hypoxia and sleep fragmentation, ultimately affect brain development and further lead to cognitive impairment if lack of timely effective intervention. In recent years, magnetic resonance imaging (MRI) and electroencephalogram (EEG) have been employed to investigate brain structure and function abnormalities in children with OSAS. Previous studies have indicated that children with OSAS showed extensive gray and white matter damage, abnormal brain function in regions such as the frontal lobe and hippocampus, as well as a significant decline in general cognitive function and executive function. However, the existing studies mainly focused on the regional activity, and the mechanism of pediatric OSAS affecting brain networks remains unknown. Moreover, it's unclear whether the alterations in brain structure and function are associated with their cognitive impairment. In this review article, we proposed two future research directions: 1) future studies should utilize the multimodal neuroimaging techniques to reveal the alterations of brain networks organization underlying pediatric OSAS; 2) further investigation is necessary to explore the relationship between brain network alteration and cognitive dysfunction in children with OSAS. With these efforts, it will be promising to identify the neuroimaging biomarkers for monitoring the brain development of children with OSAS as well as aiding its clinical diagnosis, and ultimately develop more effective strategies for intervention, diagnosis, and treatment.
Abstract Attention and salience processing have been linked to the intrinsic between- and within-network dynamics of large scale networks engaged in internal (default mode network, DN) and external attention allocation (dorsal attention, DAN, salience network, SN). The central oxytocin (OXT) system appears ideally organized to modulate widely distributed neural systems and to regulate the switch between internal attention and salient stimuli in the environment. The current randomized placebo (PLC) controlled between-subject pharmacological resting-state fMRI study in N = 187 (OXT, n = 94; n = 93; single-dose intranasal administration) healthy male and female participants employed an independent component analysis (ICA) approach to determine the modulatory effects of OXT on the within- and between-network dynamics of the DAN-SN-DN triple network system. OXT increased the functional integration between subsystems within SN and DN and increased functional segregation of the DN with the SN and DAN engaged in attentional control. Whereas no sex differences were observed, OXT effects on the DN-SN interaction were modulated by autism traits. Together, the findings suggest that OXT may facilitate efficient attentional allocation towards social cues by modulating the intrinsic functional dynamics between DN components engaged in social processing and large-scale networks involved in external attentional demands (SN, DAN).
Many young women use dieting to achieve a thinner figure yet most tend to fail as a result of heightened responsiveness to palatable food environments and increases in hedonic cravings. In this preliminary study, we developed a novel palatable food vs. thin figure conflict task to assess conflicting motives associated with eating among young women. Forty young dieting women [mean body mass index (BMI) = 22.98 kg/m2, SD = 3.81] completed a food vs. figure conflict task within a 2 (distractor image: food vs. figure) × 2 (word-image congruence: congruent vs. incongruent) within-subjects design. Results supported the view that this new task could effectively capture conflict costs. Dieting young women displayed stronger food conflicts than figure conflicts based on having longer response delays and higher error rates in the food conflict condition than the figure conflict condition. Although young women often proclaimed "dieting" to achieve or maintain a good figure, dieters appeared to exhibit stronger preferences for palatable food cues relative to thin figure cues. These results provide important information for understanding automatic processing biases toward palatable foods and underscore the need for research extensions in other cultural contexts to determine whether such biases are universal in nature.