Nrf2-small Maf heterodimer activates the transcription of many cytoprotective genes through the antioxidant response element and serves as a key factor in xenobiotic and oxidative stress responses. Our surface plasmon resonance-microarray binding analysis revealed that both Nrf2-MafG heterodimer and MafG homodimer bind to the consensus Maf recognition element with high affinity but bind differentially to the suboptimal binding sequences degenerated from the consensus. We examined the molecular basis distinguishing the binding profile of Nrf2-MafG heterodimer from that of MafG homodimer and found that the Ala-502 residue in the basic region of Nrf2 is a critical determinant of its binding specificity. In Maf proteins, a tyrosine resides in the position corresponding to Ala-502 in Nrf2. We prepared a mutant Nrf2 molecule in which Ala-502 was replaced with tyrosine. In surface plasmon resonance-microarray analysis, heterodimer of Nrf2(A502Y) and MafG displayed a binding specificity similar to that of MafG homodimer. The target genes activated by mutant Nrf2(A502Y)-small Maf heterodimer were largely different, albeit with some overlap, from those activated by wild-type Nrf2-small Maf, indicating that the array of target genes regulated by Nrf2-small Maf heterodimer differs substantially from that regulated by Maf homodimer in vivo. These results suggest that the distinct DNA binding profile of Nrf2-Maf heterodimer is biologically significant for Nrf2 to function as a key regulator of cytoprotective genes. Our contention is supported that the differential DNA binding specificity between Maf homodimers and Nrf2-Maf heterodimers establishes the differential gene regulation by these dimer-forming transcription factors.
The image representing input data for the HO-1 Maf recognition element in Fig. 4D was mistakenly used to represent input data for the third exon of the HO-1 gene in Fig. 4F.The correct data for the third exon of the HO-1 gene are now shown in Fig. 4F.Furthermore, Fig. 4A did not conform with the JBC policy that figures assembled from separate images should indicate the borders between the images.These errors do not change the interpretation of the results or the conclusions of this work.
Abstract The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.
Transcription factor Nrf2 (NF-E2-related factor 2) is essential for oxidative and electrophilic stress responses. While it has been well characterized that Nrf2 activity is tightly regulated at the protein level through proteasomal degradation via Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination, not much attention has been paid to the supply side of Nrf2, especially regulation of Nrf2 gene transcription. Here we report that manipulation of Nrf2 transcription is effective in changing the final Nrf2 protein level and activity of cellular defense against oxidative stress even in the presence of Keap1 and under efficient Nrf2 degradation, determined using genetically engineered mouse models. In excellent agreement with this finding, we found that minor A/A homozygotes of a single nucleotide polymorphism (SNP) in the human NRF2 upstream promoter region (rs6721961) exhibited significantly diminished NRF2 gene expression and, consequently, an increased risk of lung cancer, especially those who had ever smoked. Our results support the notion that in addition to control over proteasomal degradation and derepression from degradation/repression, the transcriptional level of the Nrf2 gene acts as another important regulatory point to define cellular Nrf2 levels. These results thus verify the critical importance of human SNPs that influence the levels of transcription of the NRF2 gene for future personalized medicine.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.