Left-to-right readers classify faster past events with motor responses on the left side of space and future events with responses on the right side. This suggests a left-to-right spatial organization in the mental representation of time. Here, we show that the significance and reliability of this representation are linked to the joint use of temporal and spatial codes in the task at hand. In a first unimanual Go/No-Go Implicit Association Test (IAT), attending selectively to "past" or to "future" words did not activate corresponding "left" or "right" spatial concepts and vice versa. In a second IAT, attending to both temporal (i.e., "past" and "future") words and spatial targets (i.e., "left" and "right") pointing arrows produced faster responses for congruent rather than incongruent combinations of temporal and spatial concepts in task instructions (e.g., congruent = "Go with past words and left-pointing arrows"; incongruent = "Go with past words and right-pointing arrows"). This effect increased markedly in a STEARC task where spatial codes defined the selection between "left-side" and "right-side" button presses that were associated with "past" and "future" words. Two control experiments showed only partial or unreliable space-time congruency effects when (a) participants attended to superordinate semantic codes that included both spatial "left"/"right" or temporal "past/future" subordinate codes; (b) a primary speeded response was assigned to one dimension (e.g., "past vs. future") and a nonspeeded one to the other dimension (e.g., "left" vs. "right"). These results help to define the conditions that trigger a stable and reliable spatial representation of time-related concepts.
It is debated whether the representation of numbers is endowed with a directional-spatial component so that perceiving small-magnitude numbers triggers leftward shifts of attention and perceiving large-magnitude numbers rightward shifts. Contrary to initial findings, recent investigations have demonstrated that centrally presented small-magnitude and large-magnitude Arabic numbers do not cause leftward and rightward shifts of attention, respectively. Here we verified whether perceiving small or large non-symbolic numerosities (i.e., clouds of dots) drives attention to the left or the right side of space, respectively. In experiment 1, participants were presented with central small (1, 2) vs large-numerosity (8, 9) clouds of dots followed by an imperative target in the left or right side of space. In experiment 2, a central cloud of dots (i.e., five dots) was followed by the simultaneous presentation of two identical dot-clouds, one on the left and one on the right side of space. Lateral clouds were both lower (1, 2) or higher in numerosity (8, 9) than the central cloud. After a variable delay, one of the two lateral clouds turned red and participants had to signal the colour change through a unimanual response. We found that (a) in Experiment 1, the small vs large numerosity of the central cloud of dots did not speed up the detection of left vs right targets, respectively, (b) in Experiment 2, the detection of colour change was not faster in the left side of space when lateral clouds were smaller in numerosity than the central reference and in the right side when clouds were larger in numerosity. These findings show that perceiving non-symbolic numerosity does not cause automatic shifts of spatial attention and suggests no inherent association between the representation of numerosity and that of directional space.
Whether the semantic representation of numbers is endowed with an intrinsic spatial component, so that smaller numbers are inherently represented to the left of larger ones on a Mental Number Line (MNL), is a central matter of debate in numerical cognition. To gain an insight into this issue, we investigated the performance of right brain damaged patients with left spatial neglect (N+) in a bimanual Magnitude Comparison SNARC task and in a uni-manual Magnitude Comparison Go/No-Go task (i.e. “is the number smaller or larger than 5?“). While the first task requires the use of contrasting left/right spatial codes for response selection, the second task does not require the use of these codes. In line with previous evidence, in the SNARC task N+ patients displayed a significant asymmetry in Reaction Times (RTs), with slower RTs to number “4”, that was immediately precedent to the numerical reference “5”, with respect to the number “6”, that immediately followed the same reference. This RTs asymmetry was correlated with lesion of white matter tracts, i.e. Fronto-Occipital-Fasciculus, that allows prefrontal Ba 8 and 46 to regulate the distribution of attention on sensory and memory traces in posterior occipital, temporal and parietal areas. In contrast, no similar RTs asymmetry was found in the Go/No-Go task. These findings suggest that while in the SNARC task numbers get mentally organised from left-to-right as a function of their increasing magnitude, so that N+ patients display a delay in the processing of number-magnitudes that are immediately smaller than a given numerical reference, in the Go/No-Go task no left-to-right organization is activated. These results support the idea that it is the use of contrasting left/right spatial codes, whether motor or conceptual, that triggers the generation of a spatially left-to-right organised MNL and that the representation of number magnitude is not endowed with an inherent spatial component.
Humans are prone to mentally organise the ascending series of integers according to reading habits so that in western cultures small numbers are positioned to the left of larger ones on a mental number line. Despite 140 years since seminal observations by Sir Francis Galton (Galton, 1880a, b), the functional mechanisms that give rise to directional Space–Number Associations (SNAs) remain elusive. Here, we contrasted three different experimental conditions, each including a different version of a Go/No-Go task with intermixed numerical and arrow-targets (Shaki and Fischer, 2018; Pinto et al., 2019a). We show that directional SNAs are not “all or none” phenomena. We demonstrate that SNAs get progressively less noisy and more stable the more contrasting small/large magnitude-codes and contrasting left/right spatial-codes are explicitly and fully combined in the task set. The analyses of the time–course of space-number congruency effects showed that both the absence and presence of the SNA were independent of the speed of reaction times. In agreement with our original proposal (Aiello et al., 2012), these findings show that conceptualising the ascending series of integers in spatial terms depends on the use of spatial codes in the numerical task at hand rather than on the presence of an inherent spatial dimension in the semantic representation of numbers. This evidence suggests that directional SNAs, like the SNARC effect, are secondary to the primary transfer of spatial response codes to number stimuli, rather than deriving from a primary congruency or incongruence between independent spatial-response and spatial-number codes.
Right Brain-Damaged patients (RBD) with left spatial neglect (N+), are characterised by deficits in orienting and re-orienting attention to stimuli in the contralesional left side of space. In a recent ERPs study with visual stimuli (Lasaponara et al., 2018) we have pointed out that the pathological attentional bias of N+ is matched with exaggerated novelty reaction and contextual updating of targets in the right ipsilesional space and reduced novelty reaction and contextual updating of targets in the left contralesional space. To characterise further the attentional performance of N+, here we measured Pupil Dilation (PDil), which is a reliable marker of noradrenergic-locus coeruleus activity and response to unexpected events/rewards. Compared to Neutral and Valid targets, N+ patients displayed a pathological reduction of PDil in response to infrequent Invalid targets in the left side of space, while in Healthy Controls (HC) and RBD without neglect (N-) the same targets enhanced PDil with respect to Neutral and frequent Valid targets. Invalid targets in the right side of space enhanced PDil in all experimental groups. Interestingly, both N- and N+ showed a consistent number of target omissions both in the left and right side of space. With respect to seen targets, N- showed reduced PDil in response to unseen targets both in the left and right side of space. In contrast, N+ had reduced PDil in response to unseen targets in the left side of space though not in the right side, where seen and unseen targets evoked comparable levels of PDil. These results disclose, for the first time, the PDil correlates of spatial attention in left spatial neglect and suggest that the pathological attentional bias suffered by N+ might enhance the autonomic responses reflected in PDil to unseen ipsilesional stimuli. This enhancement can contribute to biasing contextual updating and predictive coding of stimuli in the ipsilesional space, thus worsening the pathological attentional bias of N+.
Background/Objectives: Lithium is the gold standard for treating Bipolar Disorder (BD), but its effectiveness varies widely. While clinical and environmental factors may influence response, it remains unclear if screening tools can reliably predict lithium response outcomes. This study explores this potential using two widely used screening instruments for BD. Methods: A total of 146 patients with BD were evaluated. Lithium response was assessed using the Alda Scale, while hypomanic and manic symptoms were characterized through the Hypomania Checklist-32 (HCL-32) and the Mood Disorder Questionnaire (MDQ). Group differences in HCL-32 and MDQ scores were analyzed using ANOVA, and a multivariate model was employed to identify predictors of lithium response. Results: Of the total sample, 46 (31.5%) patients were identified as lithium responders based on the Alda Scale. Responders exhibited significantly higher HCL-32 scores compared to non-responders (p = 0.023), while no differences were observed in MDQ scores or other sociodemographic characteristics. Linear regression analysis revealed that HCL-32 scores were a significant predictor of Alda Scale scores, with no associations found for age, gender, or MDQ scores. Conclusions: Our study underscores the importance of considering hypomanic symptoms when estimating lithium response in BD, particularly by utilizing the HCL-32 during screening.
Humans use space to think of and communicate the flow of time. This spatial representation of time is influenced by cultural habits so that in left-to-right reading cultures, short durations and past events are mentally positioned to the left of long durations and future events. The STEARC effect (Space Temporal Association of Response Codes) shows a faster classification of short durations/past events with responses on the left side of space and of long durations/future events with responses on the right side. We have recently showed that during the classification of time durations, space is a late heuristic of time because in this case, the STEARC appears only when manual responses are slow, not when they are fast. Here, we wished to extend this observation to the semantic classification of words as referring to the 'past' or the 'future'. We hypothesised that the semantic processing of 'past' and 'future' concepts would have engaged slower decision processes than the classification of short versus long time durations. According to dual-route models of conflict tasks, if the task-dependent classification/decision process were to proceed relatively slowly, then the effects of direct activation of culturally preferred links between stimulus and response (S-R), i.e., past/left and future/right in the case of the present task, should attain higher amplitudes before the instruction-dependent correct response is selected. This would imply that, at variance with the faster classification of time durations, during the slower semantic classification of time concepts, in incongruent trials, the direct activation of culturally preferred S-R links should introduce significant reaction time (RT) costs and a corresponding STEARC at the fastest manual responses in the experiment too. The study's results confirmed this hypothesis and showed that in the classification of temporal words, the STEARC also increased as a function of the length of RTs. Taken together, the results from sensory duration and semantic classification STEARC tasks show that the occurrence, strength and time course of the STEARC varies significantly as a function of the speed and level of cognitive processing required in the task.