Abstract Fish growth underpins individual fitness and population-level metrics, with fluctuations linked to environmental variability. Growth chronologies derived from otolith increment analysis are a powerful proxy to understand population responses to environmental change and productivity. Yet, long-term patterns of growth and their environmental drivers are better understood for shallow-water species compared to deep-water inhabitants. Additionally, focus is largely on adults, disregarding the potential influence of juvenile growth which is critical to size- and age-at-maturity. Here, we investigate the long-term growth patterns of two commercially important snapper species separated by depth in northwestern Australia’s coastal shelf waters, the shallow-water Lutjanus sebae (70 year chronology, 1950–2020) and the deep-water Etelis boweni (41 year chronology, 1973–2013). Annually-resolved otolith growth chronologies revealed distinct environmental sensitivities within (juveniles vs adults) and among (shallow- vs deep-water habitats) species. Within species, juveniles and adults responded differently to shared environmental stimuli, highlighting the importance of understanding the impacts of environmental effects and sensitivities for different life-history stages. Across species, L. sebae exhibited highly variable growth tied to local climate signals such as sea surface temperature and rainfall, while E. boweni displayed more stable growth patterns that only responded to interannual and decadal shifts in the environment (e.g. Pacific Decadal Oscillation). Our results highlight potential vulnerabilities of shallow-water species to future environmental perturbations compared to species residing at depth, as they are likely to encounter more extreme climate variability under future oceanic conditions. This study contributes valuable insights into understanding and managing the impacts of future environmental variability on fisheries sustainability, emphasising the need for continued research across species and habitats.
Cryptic speciation was recently verified in Etelis carbunculus, an important component of federally managed bottomfish fisheries in the Pacific Territories of the United States. As a result, archived otolith collections used for fishery assessment are now contaminated with newly described E. boweni in areas where these species co-occur. We compared the efficacy of otolith morphometrics and Fourier transform near-infrared (FT-NIR) spectroscopy to discriminate species first using voucher (i.e., known species) otoliths (n = 93) from the SW Pacific, then applied optimal models to archived otoliths (n = 91) collected around Guam. Significant and distinguishable differences in otolith morphometrics as well as FT-NIR spectral absorbance patterns were observed between E. carbunculus and E. boweni voucher samples. Classification models applied using both morphometric measurements (quadratic discriminant analysis) and FT-NIR spectral data (partial least squares discriminant analysis) were able to predict species with a high (93 – 100%) degree of accuracy despite a relatively large spatial area of specimen collection ( ± 10° latitude and longitude) and regardless of whether otoliths were whole (i.e., unbroken). Further, each method identified members of newly described E. boweni in the archived collection of E. carbunculus otoliths captured around Guam, providing strong evidence that the species' distributions overlap in this region. The purported identification of both E. carbunculus and E. boweni in the archived catch from Guam has important implications for fisheries management; therefore, it is imperative that the corresponding otolith collections are examined to ensure that the otoliths are assigned to the correct species.
ABSTRACT Climatic variation can play a critical role in driving synchronous and asynchronous patterns in the expression of life history characteristics across vast spatiotemporal scales. The synchronisation of traits, such as an individual's growth rate, under environmental stress may indicate a loss of phenotypic diversity and thus increased population vulnerability to stochastic deleterious events. In contrast, synchronous growth under favourable ecological conditions and asynchrony during unfavourable conditions may help population resilience and buffer against the negative implications of future environmental variability. Despite the significant implications of growth synchrony and asynchrony to population productivity and persistence, little is known about its causes and consequences either within or among fish populations. This is especially true for long‐lived deep‐sea species that inhabit environments characterised by large‐scale interannual and decadal changes, which could propagate growth synchrony across vast distances. We developed otolith growth chronologies for three deep‐sea fishes ( Etelis spp.) over 65° of longitude and 20° of latitude across the Indo‐Pacific region. Using reconstructed time series of interannual growth from six distinct Exclusive Economic Zones (EEZs), we assessed the level of spatial synchrony at the individual‐, population‐ and species‐scale. Across five decades of data, complex patterns of synchronous and asynchronous growth were apparent for adult populations within and among EEZs of the Pacific Ocean, mediated by shifts in oceanographic phenomena such as the Pacific Decadal Oscillation. Overall, our results indicate that the degree of synchrony in biological traits at depth depends on life history stage, spatiotemporal scales of environmental variability and the influence of ecological factors such as competition and dispersal. By determining the magnitude and timing of spatially synchronous growth at depth and its links to environmental variability, we can better understand fluctuations in deep‐sea productivity and its vulnerability to future environmental stressors, which are key considerations for sustainability.