Carnivorans are an important study object for comparative neuroscience, as they exhibit a wide range of behaviours, ecological adaptations, and social structures. Previous studies have mainly examined relative brain size, but a comprehensive understanding of brain diversity requires the investigation of other aspects of their neuroanatomy. Here, we obtained primarily post-mortem brain scans from eighteen species of the order Carnivora, reconstructed their cortical surfaces, and examined neocortical sulcal anatomy to establish a framework for systematic inter-species comparisons. We observed distinct regional variations in sulcal anatomy, potentially related to the species’ behaviour and ecology. Arctoidea species with pronounced forepaw dexterity exhibited complex sulcal configurations in the presumed somatosensory cortex but low sulcal complexity in the presumed visual and auditory occipitotemporal cortex. Canidae had the largest number of unique major sulci with a unique sulcus in the occipital cortex and highly social canids featuring an additional frontal cortex sulcus. We also observed differentially complex occipito-temporal sulcal patterns in Felidae and Canidae, indicative of changes in auditory and visual areas that may be related to foraging strategies and social behaviour. In conclusion, this study presents an inventory of the sulcal anatomy of a number of rarely studied carnivoran brains and establishes a framework and novel avenues for further investigations employing a variety of neuroimaging modalities to reveal more about carnivoran brain diversity.
Carnivorans are an important study object for comparative neuroscience, as they exhibit a wide range of behaviours, ecological adaptations, and social structures. Previous studies have mainly examined relative brain size, but a comprehensive understanding of brain diversity requires the investigation of other aspects of their neuroanatomy. Here, we obtained primarily post-mortem brain scans from eighteen species of the order Carnivora, reconstructed their cortical surfaces, and examined neocortical sulcal anatomy to establish a framework for systematic inter-species comparisons. We observed distinct regional variations in sulcal anatomy, potentially related to the species' behaviour and ecology. Arctoidea species with pronounced forepaw dexterity exhibited complex sulcal configurations in the presumed somatosensory cortex but low sulcal complexity in the presumed visual and auditory occipitotemporal cortex. Canidae had the largest number of unique major sulci with a unique sulcus in the occipital cortex and highly social canids featuring an additional frontal cortex sulcus. We also observed differentially complex occipito-temporal sulcal patterns in Felidae and Canidae, indicative of changes in auditory and visual areas that may be related to foraging strategies and social behaviour. In conclusion, this study presents an inventory of the sulcal anatomy of a number of rarely studied carnivoran brains and establishes a framework and novel avenues for further investigations employing a variety of neuroimaging modalities to reveal more about carnivoran brain diversity.
Carnivorans are an important study object for comparative neuroscience, as they exhibit a wide range of behaviours, ecological adaptations, and social structures. Previous studies have mainly examined relative brain size, but a comprehensive understanding of brain diversity requires the investigation of other aspects of their neuroanatomy. Here, we obtained primarily post-mortem brain scans from eighteen species of the order Carnivora, reconstructed their cortical surfaces, and examined neocortical sulcal anatomy to establish a framework for systematic inter-species comparisons. We observed distinct regional variations in sulcal anatomy, potentially related to the species' behaviour and ecology. Arctoidea species with pronounced forepaw dexterity exhibited complex sulcal configurations in the presumed somatosensory cortex but low sulcal complexity in the presumed visual and auditory occipitotemporal cortex. Canidae had the largest number of unique major sulci with a unique sulcus in the occipital cortex and highly social canids featuring an additional frontal cortex sulcus. We also observed differentially complex occipito-temporal sulcal patterns in Felidae and Canidae, indicative of changes in auditory and visual areas that may be related to foraging strategies and social behaviour. In conclusion, this study presents an inventory of the sulcal anatomy of a number of rarely studied carnivoran brains and establishes a framework and novel avenues for further investigations employing a variety of neuroimaging modalities to reveal more about carnivoran brain diversity.
Abstract Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species’ brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.
Carnivorans are an important study object for comparative neuroscience, as they exhibit a wide range of behaviours, ecological adaptations, and social structures. Previous studies have mainly examined relative brain size, but a comprehensive understanding of brain diversity requires the investigation of other aspects of their neuroanatomy. Here, we obtained primarily post-mortem brain scans from eighteen species of the order Carnivora, reconstructed their cortical surfaces, and examined neocortical sulcal anatomy to establish a framework for systematic inter-species comparisons. We observed distinct regional variations in sulcal anatomy, potentially related to the species’ behaviour and ecology. Arctoidea species with pronounced forepaw dexterity exhibited complex sulcal configurations in the presumed somatosensory cortex but low sulcal complexity in the presumed visual and auditory occipitotemporal cortex. Canidae had the largest number of unique major sulci with a unique sulcus in the occipital cortex and highly social canids featuring an additional frontal cortex sulcus. We also observed differentially complex occipito-temporal sulcal patterns in Felidae and Canidae, indicative of changes in auditory and visual areas that may be related to foraging strategies and social behaviour. In conclusion, this study presents an inventory of the sulcal anatomy of a number of rarely studied carnivoran brains and establishes a framework and novel avenues for further investigations employing a variety of neuroimaging modalities to reveal more about carnivoran brain diversity.