Although it is widely accepted that protein function is largely dependent on its structure, intrinsically disordered proteins (IDPs) lack defined structure but are essential in proper cellular processes. Mammalian high mobility group proteins (HMGA) are one such example of IDPs that perform a number of crucial nuclear activities and have been highly studied due to their involvement in the proliferation of a variety of disease and cancers. Traditional structural characterization methods have had limited success in understanding HMGA proteins and their ability to coordinate to DNA. Ion mobility spectrometry and mass spectrometry provide insights into the diversity and heterogeneity of structures adopted by IDPs and are employed here to interrogate HMGA2 in its unbound states and bound to two DNA hairpins. The broad distribution of collision cross sections observed for the apo-protein are restricted when HMGA2 is bound to DNA, suggesting that increased protein organization is promoted in the holo-form. Ultraviolet photodissociation was utilized to probe the changes in structures for the compact and elongated structures of HMGA2 by analyzing backbone cleavage propensities and solvent accessibility based on charge-site analysis, which revealed a spectrum of conformational possibilities. Namely, preferential binding of the DNA hairpins with the second of three AT-hooks of HMGA2 is suggested based on the suppression of backbone fragmentation and distribution of DNA-containing protein fragments.
The mammalian high-mobility group protein AT hook 2 (HMGA2) is a DNA binding protein that specifically recognizes the minor groove of AT-rich DNA sequences. Disruption of its expression pattern is directly linked to oncogenesis and obesity. In this paper, we constructed a new plasmid pBendAT to study HMGA2-induced DNA bending. pBendAT carries a 230 bp DNA segment containing five pairs of restriction enzyme sites, which can be used to produce a set of DNA fragments of identical length to study protein-induced DNA bending. The DNA fragments of identical length can also be generated using PCR amplification. Since pBendAT does not contain more than three consecutive AT base pairs, it is suitable for the assessment of DNA bending induced by proteins recognizing AT-rich DNA sequences. Indeed, using pBendAT, we demonstrated that HMGA2 is a DNA bending protein and bends all three tested DNA binding sequences of HMGA2, SELEX1, SELEX2, and PRDII. The DNA bending angles were estimated to be 34.2°, 33.5°, and 35.4°, respectively.
A series of Hoechst 33258 based mono- and bisbenzimidazoles have been synthesized and their Escherichia coli DNA topoisomerase I inhibition, binding to B-DNA duplex, and antibacterial activity has been evaluated. Bisbenzimidazoles with alkynyl side chains display excellent E. coli DNA topoisomerase I inhibition properties with IC50 values <5.0 μM. Several bisbenzimidazoles (3, 6, 7, 8) also inhibit RNA topoisomerase activity of E. coli DNA topoisomerase I. Bisbenzimidazoles inhibit bacterial growth much better than monobenzimidazoles for Gram-positive strains. The minimum inhibitory concentration (MIC) was much lower for Gram positive bacteria (Enterococcus spp. and Staphylococcus spp., including two MRSA strains 0.3-8 μg/mL) than for the majority of Gram negative bacteria (Pseudomonas aeruginosa, 16-32 μg/mL, Klebsiella pneumoniae > 32 μg/mL). Bisbenzimidazoles showed varied stabilization of B-DNA duplex (1.2-23.4 °C), and cytotoxicity studies show similar variation dependent upon the side chain length. Modeling studies suggest critical interactions between the inhibitor side chain and amino acids of the active site of DNA topoisomerase I.