A single male Rottweiler dog with severe footpad hyperkeratosis starting at an age of eight weeks was investigated. The hyperkeratosis was initially restricted to the footpads. The footpad lesions caused severe discomfort to the dog and had to be trimmed under anesthesia every 8–10 weeks. Histologically, the epidermis showed papillated villous projections of dense keratin in the stratum corneum. Starting at eight months of age, the patient additionally developed signs consistent with atopic dermatitis and recurrent bacterial skin and ear infections. Crusted hyperkeratotic plaques developed at sites of infection. We sequenced the genome of the affected dog and compared the data to 655 control genomes. A search for variants in 32 candidate genes associated with human palmoplantar keratoderma (PPK) revealed a single private protein-changing variant in the affected dog. This was located in the DSG1 gene encoding desmoglein 1. Heterozygous monoallelic DSG1 variants have been reported in human patients with striate palmoplantar keratoderma I (SPPK1), while biallelic DSG1 loss of function variants in humans lead to a more pronounced condition termed severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome. The identified canine variant, DSG1:c.2541_2545delGGGCT, leads to a frameshift and truncates about 20% of the coding sequence. The affected dog was homozygous for the mutant allele. The comparative data on desmoglein 1 function in humans suggest that the identified DSG1 variant may have caused the footpad hyperkeratosis and predisposition for allergies and skin infections in the affected dog.
In a litter of Turkish Van cats, three out of six kittens developed severe signs of skin disease, diarrhea, and systemic signs of stunted growth at 6 weeks of age. Massive secondary infections of the skin lesions evolved. Histopathological examinations showed a mild to moderate hyperplastic epidermis, covered by a thick layer of laminar to compact, mostly parakeratotic keratin. The dermis was infiltrated with moderate amounts of lymphocytes and plasma cells. Due to the severity of the clinical signs, one affected kitten died and the other two had to be euthanized. We sequenced the genome of one affected kitten and compared the data to 54 control genomes. A search for private variants in the two candidate genes for the observed phenotype, MKLN1 and SLC39A4, revealed a single protein-changing variant, SLC39A4:c.1057G>C or p.Gly353Arg. The solute carrier family 39 member 4 gene (SLC39A4) encodes an intestinal zinc transporter required for the uptake of dietary zinc. The variant is predicted to change a highly conserved glycine residue within the first transmembrane domain, which most likely leads to a loss of function. The genotypes of the index family showed the expected co-segregation with the phenotype and the mutant allele was absent from 173 unrelated control cats. Together with the knowledge on the effects of SLC39A4 variants in other species, these data suggest SLC39A4:c.1057G>C as candidate causative genetic variant for the phenotype in the investigated kittens. In line with the human phenotype, we propose to designate this disease acrodermatitis enteropathica (AE).
Epidermolysis bullosa (EB) is a group of blistering disorders that includes several subtypes, classified according to their level of cleavage. Typical clinical signs are blisters and erosions resulting from minimal trauma. The disease has been described in many mammalian species and pathogenic variants in at least 18 different genes have been identified. In the present study, we investigated a Cardigan Welsh Corgi with congenital clinical signs consistent with epidermolysis bullosa. The puppy had blisters and erosions on the paw pads, and the oral mucosa. Histologic examination demonstrated the typical clefting between the dermis and epidermis and confirmed the clinical suspicion. We obtained whole genome sequencing data from the affected puppy and searched for variants in candidate genes known to cause EB. This revealed a heterozygous missense variant, KRT5:p.(E476K), affecting the highly conserved KLLEGE motif of keratin 5. The mutant allele in the affected puppy arose owing to a de novo mutation event as it was absent from both unaffected parents. Knowledge of the functional impact of KRT5 variants in other species together with the demonstration of the de novo mutation event establishes KRT5:p.(E476K) as causative variant for the observed EBS.
Systemic lupus erythematosus (SLE) is a heterogeneous multifactorial disease. Upregulated TLR7 signaling is a known risk factor for SLE. Recently, it was shown that specific genetic variants in UNC93B1 affect the physiological regulation of TLR7 signaling and cause characteristic autoimmune phenotypes with monogenic autosomal recessive inheritance in mutant mice and dogs. We therefore hypothesized that homologous variants in the human UNC93B1 gene might be responsible for a fraction of human SLE patients. We analyzed 536 patients of the Swiss SLE Cohort Study for the presence of genetic variants affecting the C-terminal tail of UNC93B1. None of the investigated patients carried bi-allelic UNC93B1 variants that were likely to explain their SLE phenotypes. We conclude that genetic variants affecting the C-terminal tail of UNC93B1 are not a common risk factor for SLE. It cannot be excluded that such variants might contribute to other heritable autoimmune diseases.
We investigated three neonatal Basset Hound littermates with lesions consistent with epidermolysis bullosa (EB), a group of genetic blistering diseases. A clinically normal bitch was bred to her grandfather by artificial insemination. Out of a litter of seven puppies, two affected puppies died and one was euthanized, with these puppies being submitted for diagnostic necropsy. All had multiple bullae and ulcers involving the nasal planum and paw pads, as well as sloughing claws; one puppy also had oral and esophageal ulcers. The complete genome of one affected puppy was sequenced, and 37 known EB candidate genes were assessed. We found a candidate causative variant in COL7A1, which encodes the collagen VII alpha 1 chain. The variant is a complex rearrangement involving duplication of a 107 bp region harboring a frameshift deletion of 7 bp. The variant is predicted to truncate more than 75% of the open reading frame, p.(Val677Serfs*11). Targeted genotyping of this duplication confirmed that all three affected puppies were homozygous for the duplication, whereas 12 unaffected Basset Hounds did not carry the duplication. This variant was also not seen in the genomes of more than 600 dogs of other breeds. COL7A1 variants have been identified in humans and dogs with dystrophic epidermolysis bullosa (DEB). The identified COL7A1 variant therefore most likely represents the causative variant and allows the refinement of the preliminary EB diagnosis to DEB.
We investigated 4 European domestic shorthair kittens with skin lesions consistent with the dermatosparaxis type of the Ehlers-Danlos syndrome, a connective tissue disorder. The kittens were sired by the same tomcat but were born by 3 different mothers. The kittens had easily torn skin resulting in nonhealing skin wounds. Both clinically and histologically, the skin showed thin epidermis in addition to inflammatory changes. Changes in collagen fibers were visible in electron micrographs. The complete genome of an affected kitten was sequenced. A one base pair duplication leading to a frameshift in the candidate gene ADAMTS2 was identified, p.(Ser235fs*3). All 4 affected cats carried the frameshift duplication in a homozygous state. Genotypes at this variant showed perfect cosegregation with the autosomal recessive Ehlers-Danlos syndrome phenotype in the available family. The mutant allele did not occur in 48 unrelated control cats. ADAMTS2 loss-of-function variants cause autosomal recessive forms of Ehlers-Danlos syndrome in humans, mice, dogs, cattle, and sheep. The available evidence from our investigation together with the functional knowledge on ADAMTS2 in other species allows to classify the identified ADAMTS2 variant as pathogenic and most likely causative variant for the observed Ehlers-Danlos syndrome.
We investigated four cats with similar clinical skin-related signs strongly suggestive of Ehlers-Danlos syndrome (EDS). Cases no. 1 and 4 were unrelated and the remaining two cases, no. 2 and 3, were reportedly siblings. Histopathological changes were characterized by severely altered dermal collagen fibers. Transmission electron microscopy in one case demonstrated abnormalities in the collagen fibril organization and structure. The genomes of the two unrelated affected cats and one of the affected siblings were sequenced and individually compared to 54 feline control genomes. We searched for private protein changing variants in known human EDS candidate genes and identified three independent heterozygous COL5A1 variants. COL5A1 is a well-characterized candidate gene for classical EDS. It encodes the proα1 chain of type V collagen, which is needed for correct collagen fibril formation and the integrity of the skin. The identified variants in COL5A1 are c.112_118+15del or r.spl?, c.3514A>T or p.(Lys1172*), and c.3066del or p.(Gly1023Valfs*50) for cases no. 1, 2&3, and 4, respectively. They presumably all lead to nonsense-mediated mRNA decay, which results in haploinsufficiency of COL5A1 and causes the alterations of the connective tissue. The whole genome sequencing approach used in this study enables a refinement of the diagnosis for the affected cats as classical EDS. It further illustrates the potential of such experiments as a precision medicine approach in animals with inherited diseases.
Cutaneous lupus erythematosus (CLE) in humans encompasses multiple subtypes that exhibit a wide array of skin lesions and, in some cases, are associated with the development of systemic lupus erythematosus (SLE). We investigated dogs with exfoliative cutaneous lupus erythematosus (ECLE), a dog-specific form of chronic CLE that is inherited as a monogenic autosomal recessive trait. A genome-wide association study (GWAS) with 14 cases and 29 controls confirmed a previously published result that the causative variant maps to chromosome 18. Autozygosity mapping refined the ECLE locus to a 493 kb critical interval. Filtering of whole genome sequence data from two cases against 654 controls revealed a single private protein-changing variant in this critical interval, UNC93B1:c.1438C>A or p.Pro480Thr. The homozygous mutant genotype was exclusively observed in 23 ECLE affected German Shorthaired Pointers and an ECLE affected Vizsla, but absent from 845 controls. UNC93B1 is a transmembrane protein located in the endoplasmic reticulum and endolysosomes, which is required for correct trafficking of several Toll-like receptors (TLRs). The p.Pro480Thr variant is predicted to affect the C-terminal tail of the UNC93B1 that has recently been shown to restrict TLR7 mediated autoimmunity via an interaction with syndecan binding protein (SDCBP). The functional knowledge on UNC93B1 strongly suggests that p.Pro480Thr is causing ECLE in dogs. These dogs therefore represent an interesting spontaneous model for human lupus erythematosus. Our results warrant further investigations of whether genetic variants affecting the C-terminus of UNC93B1 might be involved in specific subsets of CLE or SLE cases in humans and other species.
Abstract Investigations of hereditary phenotypes in spontaneous mutants may help to better understand the physiological functions of the altered genes. We investigated two unrelated domestic shorthair cats with bulbous swellings of the hair shafts. The clinical, histopathological, and ultrastructural features were similar to those in mice with lanceolate hair phenotype caused by loss-of-function variants in Dsg4 encoding desmoglein 4. We sequenced the genomes from both affected cats and compared the data of each affected cat to 61 control genomes. A search for private homozygous variants in the DSG4 candidate gene revealed independent frameshift variants in each case, c.76del or p.Ile26fsLeu*4 in case no. 1 and c.1777del or p.His593Thrfs*23 in case no. 2. DSG4 is a transmembrane glycoprotein located primarily in the extracellular part of desmosomes, a complex of adhesion molecules responsible for connecting the keratin intermediate filaments of neighbouring epithelial cells. Desmosomes are essential for normal hair shaft formation. Both identified DSG4 variants in the affected cats lead to premature stop codons and truncate major parts of the open-reading frame. We assume that this leads to a complete loss of DSG4 function, resulting in an incorrect formation of the desmosomes and causing the development of defective hair shafts. Together with the knowledge on the effects of DSG4 variants in other species, our data suggest that the identified DSG4 variants cause the hair shaft dystrophy. To the best of our knowledge, this study represents the first report of pathogenic DSG4 variants in domestic animals.