The photophysics of organic semiconductor (OSC) thin films or crystals has garnered significant attention in recent years since a comprehensive theoretical understanding of the various processes occurring upon photoexcitation is crucial for assessing the efficiency of OSC materials. To date, research in this area has relied on methods using Frenkel-Holstein Hamiltonians, calculations of the GW-Bethe-Salpeter equation with periodic boundaries, or cluster-based approaches using quantum chemical methods, with each of the three approaches having distinct advantages and disadvantages. In this work, we introduce an optimally tuned, range-separated time-dependent density functional theory approach to accurately reproduce the total and polarization-resolved absorption spectra of pentacene, tetracene, and perylene thin films, all representative OSC materials. Our approach achieves excellent agreement with experimental data (mostly ≤0.1 eV) when combined with the utilization of clusters comprising multiple monomers and a standard polarizable continuum model to simulate the thin-film environment. Our protocol therefore addresses a major drawback of cluster-based approaches and makes them attractive tools for OSC investigations. Its key advantages include its independence from external, system-specific fitting parameters and its straightforward application with well-known quantum chemical program codes. It demonstrates how chemical intuition can help to reduce computational cost and still arrive at chemically meaningful and almost quantitative results.
Three thiophene ring-terminated benzothieno[3,2-b]benzothiophene (BTBT) derivatives, C-C6-DBTTT, C-C12-DBTTT, and L-C12-DBTTT, were designed and synthesized, differing in the isomerization of alkyl chain position as well as aromatic core construction. A study of crystal structure and electronic properties combined with a theoretical investigation was performed to understand the structure–property relationships for the application of these molecules in organic field-effect transistors (OFETs). Different crystal packing structures were observed for these three isomers by single-crystal X-ray diffraction as a result of a crystal engineering molecular design approach. The highest charge-carrier mobility was observed for the isomer with a collinear core, L-C12-DBTTT. Preliminary results demonstrated a promising hole mobility of 2.44 cm2 V–1 s–1, despite the polymorphism observed in ambient conditions.
We present real-time in situ studies of optical spectra during thin film growth of several prototype organic semiconductors (pentacene, perfluoropentacene, and diindenoperylene) on SiO2. These data provide insight into surface and interface effects that are of fundamental importance and of relevance for applications in organic electronics. With respect to the bulk, the different molecular environment and structural changes within the first few monolayers can give rise to significant optical changes. Similar to interface-driven phenomena in, e.g., magnetism, spectral changes as a function of thickness d are a very general effect, decaying as 1/d in the simplest approximation. We observe energy shifts of 50-100 meV, rather small changes of the exciton-phonon coupling, and new transitions in specific systems, which should be considered as general features of the growth of organics.
Abstract Heteroepitaxy of one material onto another molecular single crystal surface is one promising route for resolving questions about formation criteria of molecular heterojunction structures as well as for the development of next‐generation organic electronic devices allowing efficient intermolecular charge carrier exchange. In the present work, the in‐plane and out‐of‐plane crystallinity of an epitaxial molecular p–n heterojunction, C 60 (acceptor) overlayers formed on the single crystal surface of pentacene (donor), and its evolution, depending on the growth temperature, are systematically elucidated. It is demonstrated that the crystallinity of the C 60 on pentacene is dominated by the temperature during the growth rather than the postannealing of the sample. The mean crystallite size in the in‐plane directions grows from 50 to 150 nm proportionally to the growth temperature in a range of 125–370 K. The present results suggest that the formation mechanisms of the C 60 /pentacene heterojunction are kinetically controlled, by diffusion processes at the molecular interface, rather than by the thermal equilibrium conditions.
Modifying the optical and electronic properties of crystalline organic thin films is of great interest for improving the performance of modern organic semiconductor devices. Therein, the statistical mixing of molecules to form a solid solution provides an opportunity to fine-tune optical and electronic properties. Unfortunately, the diversity of intermolecular interactions renders mixed organic crystals highly complex, and a holistic picture is still lacking. Here, we report a study of the optical absorption properties in solid solutions of pentacene and tetracene, two prototypical organic semiconductors. In the mixtures, the optical properties can be continuously modified by statistical mixing at the molecular level. Comparison with time-dependent density functional theory calculations on occupationally disordered clusters unravels the electronic origin of the low energy optical transitions. The disorder partially relaxes the selection rules, leading to additional optical transitions that manifest as optical broadening. Furthermore, the contribution of diabatic charge-transfer states is modified in the mixtures, reducing the observed splitting in the 0–0 vibronic transition. Additional comparisons with other blended systems generalize our results and indicate that changes in the polarizability of the molecular environment in organic thin-film blends induce shifts in the absorption spectrum.
We report detailed temperature dependent photoluminescence (PL) spectra of pentacene (PEN), perfluoropentacene (PFP), and PEN:PFP mixed thin films grown on SiO2. PEN and PFP are particularly suitable for this study, since they are structurally compatible for good intermixing and form a model donor/acceptor system. The PL spectra of PEN are discussed in the context of existing literature and compared to the new findings for PFP. We analyze the optical transitions observed in the spectra of PEN and PFP using time-dependent density functional theory (TD-DFT) calculations. Importantly, for the mixed PEN:PFP film we observe an optical transition in PL at 1.4 eV providing evidence for coupling effects in the blend. We discuss a possible charge-transfer (CT) and provide a tentative scheme of the optical transitions in the blended films.