Low-grade serous carcinomas (LGSCs) and their precursors serous borderline tumours (SBTs) characteristically harbour mutations in BRAF, KRAS or NRAS but rarely in TP53, whereas high-grade serous carcinomas (HGSCs) are characterised by frequent TP53 mutations but rare BRAF, KRAS or NRAS mutations. In a small subset of cases, LGSCs and/or SBTs develop into high-grade tumours, including HGSCs and poorly differentiated carcinomas (PDCs). Here, we sought to define the repertoire of somatic genetic alterations in low-grade serous tumours and synchronous or metachronous high-grade adnexal carcinomas.
Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients.Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations.Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard genotyping tools if the overall diversity of circulating clones is limited. These findings have important implications for clinical trials of new anti-tuberculosis drugs.
Abstract Motivation: Copy number abnormalities (CNAs) represent an important type of genetic mutation that can lead to abnormal cell growth and proliferation. New high-throughput sequencing technologies promise comprehensive characterization of CNAs. In contrast to microarrays, where probe design follows a carefully developed protocol, reads represent a random sample from a library and may be prone to representation biases due to GC content and other factors. The discrimination between true and false positive CNAs becomes an important issue. Results: We present a novel approach, called CNAseg, to identify CNAs from second-generation sequencing data. It uses depth of coverage to estimate copy number states and flowcell-to-flowcell variability in cancer and normal samples to control the false positive rate. We tested the method using the COLO-829 melanoma cell line sequenced to 40-fold coverage. An extensive simulation scheme was developed to recreate different scenarios of copy number changes and depth of coverage by altering a real dataset with spiked-in CNAs. Comparison to alternative approaches using both real and simulated datasets showed that CNAseg achieves superior precision and improved sensitivity estimates. Availability: The CNAseg package and test data are available at http://www.compbio.group.cam.ac.uk/software.html. Contact: Sergii.Ivakhno@cancer.org.uk Supplementary information: Supplementary data are available at Bioinformatics online.
To determine early somatic changes in high-grade serous ovarian cancer (HGSOC), we performed whole genome sequencing on a rare collection of 16 low stage HGSOCs. The majority showed extensive structural alterations (one had an ultramutated profile), exhibited high levels of p53 immunoreactivity, and harboured a TP53 mutation, deletion or inactivation. BRCA1 and BRCA2 mutations were observed in two tumors, with nine showing evidence of a homologous recombination (HR) defect. Combined Analysis with The Cancer Genome Atlas (TCGA) indicated that low and late stage HGSOCs have similar mutation and copy number profiles. We also found evidence that deleterious TP53 mutations are the earliest events, followed by deletions or loss of heterozygosity (LOH) of chromosomes carrying TP53, BRCA1 or BRCA2. Inactivation of HR appears to be an early event, as 62.5% of tumours showed a LOH pattern suggestive of HR defects. Three tumours with the highest ploidy had little genome-wide LOH, yet one of these had a homozygous somatic frame-shift BRCA2 mutation, suggesting that some carcinomas begin as tetraploid then descend into diploidy accompanied by genome-wide LOH. Lastly, we found evidence that structural variants (SV) cluster in HGSOC, but are absent in one ultramutated tumor, providing insights into the pathogenesis of low stage HGSOC.
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic. The two cancer genome sequences presented in this issue demonstrate how next-generation sequencing technologies can inform us about mutational processes, repair pathways and gene networks associated with cancer development. First, the genome of a cell line derived from a bone marrow metastasis in a patient who had small-cell lung cancer. This cancer is typical of the type induced by smoking, and the sequence contains mutation signatures characteristic of some of the more than 60 carcinogens present in tobacco smoke. The second paper compares the whole genome sequence of a melanoma cell line to a lymphoblastoid cell line from the same individual. This, the first complete mutational analysis of a solid tumour, reveals a dominant mutational signature reflecting DNA damage due to exposure to ultraviolet light. Here, the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person are sequenced, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The data provide insight into the causes of tumour formation and the development of the cancer genome, with the dominant mutational signature reflecting DNA damage due to ultraviolet light exposure.