Quantum emitters are essential for quantum optics and photonic quantum information technologies. To date, diverse quantum emitters such as single molecules, quantum dots, and color centers in diamond have been integrated onto chips by various methods which typically have complex operation. Here, our quantum emitters are colloidal CdSe/ZnS quantum dots (QDs) embedded in polymeric nanostructures. We report two approaches based on photo-polymerization for deterministically integrating quantum emitters on chips. Firstly, based on one-photon polymerization (OPP), we coupled an external excitation laser into surface ion exchanged waveguides (IEWs), the surface evanescent wave resulting in the QD-polymer ridges. In order to scale down the dimension of the QD-polymer structures, we secondly fabricated QD-polymer nano-dots on glass substrates by a direct laser writing platform (DLW) based on two-photon polymerization (TPP). A deep fabricating parameters study has been made enable us to control the dimensions of the polymer-QDs nanocomposites. Moreover, photoluminescence (PL) measurement results demonstrate the feasible and potential of our method for integrating quantum emitters onto future complex photonic chips.
Quantum dots optically excited in close proximity to a silver nanowire can launch surface plasmons. The challenge related to this promising hybrid system is to control the position of nanoemitters on the nanowire. We report on the use of a two-photon photopolymerization process to strategically position quantum dots on nanowires at controlled sites. A parametric study of the distance between the quantum dots and the nanowire extremity shows that precise control of the position of the launching sites enables command of light intensity at the wire end through surface plasmon propagation.
Very recently, the interest for quantum technologies by the scientific community and industry has strongly increased. Different types of implementations have been proposed as a practical implementation for a quantum bit. In particular, quantum photonics is a strong candidate for such applications. We are interested in using single photons and single spins in diamond as a solid state host matrix (nanodiamonds or membranes). Integration of nanosources of light is currently a major bottleneck preventing the realisation of all-photonic chips for quantum technologies and nanophotonics applications. Ideally, one needs optical circuitry, on-chip photodetection and on-chip generation of quantum states of light (single photons, entangled photons…). Our recent work on a new platform for quantum photonics using integrated optics can offer an easier and robust way to create compact quantum circuits that can be on chip and scalable. In this context, the coupling between waveguides and single photon emitters is critical. The goal of our research is to efficiently couple single photon emitters with a new platform made of optical glass waveguides. These waveguides are based on the so-called ion-exchange glass technology and is know in the photonics industry for quite some time but has never been used in the context of quantum technologies. Efficient light-matter interface is of primordial importance in this system. To achieve this goal, several paths are undertaken such as the use of dielectric and plasmonic structuration in order to increase the light interaction with the waveguide or to develop fabrication techniques to insert the emitters directly inside the guide (for nanodiamonds). We will show what is our current state of the art for placing single emitters at the right place on our optical waveguides made of ion-exchange in glass and in particular what can be done to improve our first promising results in order to get near unity coupling between the optical bus and single photon emitters. We will show first results with semiconductor nanocrystals (NCs) but also using nitrogen-vacancy and silicon-vacancy defects in nanodiamond. The very first step in of our approach consists in the design of the structured waveguide using electromagnetic FDTD. We demonstrated that it is possible to achieve more than 90% coupling. In practice, before using coloured centres in diamond, we started working with CdSe/ZnS semiconductor nanocrystals. So far, we use straight waveguides defined to be single modes at the nominal wavelength of the emission line of the nanoemitters. The positioning of nanoemitters is still a challenge to be achieved. We developed an original technique based on photopolymerisation of light where the nanocrystals are grafted into a light sensitive polymer and can be placed at adequate positions.
This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.
The integration of nanoparticles (NPs) into photonic devices and plasmonic sensors requires selective patterning of these NPs with fine control of their size, shape, and spatial positioning. In this article, we report on a general strategy to pattern different types of NPs. This strategy involves the functionalization of photopolymers before their patterning by two-photon laser writing to fabricate micro- and nanostructures that selectively attract colloidal NPs with suitable ligands, allowing their precise immobilization and organization even within complex 3D structures. Monolayers of NPs without aggregations are obtained and the surface density of NPs on the polymer surface can be controlled by changing either the time of immersion in the colloidal solution or the type of amine molecule chemically grafted on the polymer surface. Different types of NPs (gold, silver, polystyrene, iron oxide, colloidal quantum dots, and nanodiamonds) of different sizes are introduced showing a potential toward nanophotonic applications. To validate the great potential of our method, we successfully demonstrate the integration of quantum dots within a gold nanocube with high spatial resolution and nanometer precision. The promise of this hybrid nanosource of light (plasmonic/polymer/QDs) as optical nanoswitch is illustrated through photoluminescence measurements under polarized exciting light.