Activated Iridium Oxide Film (AIROF) microelectrodes are thought to be well-suited for neural stimulation of the cortex because they can sustain high charge capacity (about ten times higher than Pt microelectrodes) when characterized in phosphate-buffered saline (PBS) or other high ionic strength electrolytes. However, it is known that their capacity diminishes after they are implanted in vivo. It has been suggested that tissue encapsulation is an underlying cause. In this paper, we report electrochemical measurements of AIROF microelectrodes that were performed acutely in the brain of the zebra finch. The experiment showed that the interstitial fluid environment in the bird's brain did not maintain the high charge delivery capacity of the AIROF microelectrodes. A simple compensation for access resistance may create hazards to sustained electrode integrity
Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ∼95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.
Here, we report on chronic in-vivo testing of a 16-channel wireless floating microelectrode array (WFMA) in a rat sciatic nerve model. Muscle threshold currents, charge injection levels, and charge density were monitored for electrodes of two WFMA devices implanted into animal subjects over a five month period. This type of wireless stimulation device could eliminate problems associated with percutaneous connectors for a variety of neural prostheses and other medical devices.
Objective.Ensuring the longevity of implantable devices is critical for their clinical usefulness. This is commonly achieved by hermetically sealing the sensitive electronics in a water impermeable housing, however, this method limits miniaturisation. Alternatively, silicone encapsulation has demonstrated long-term protection of implanted thick-film electronic devices. However, much of the current conformal packaging research is focused on more rigid coatings, such as parylene, liquid crystal polymers and novel inorganic layers. Here, we consider the potential of silicone to protect implants using thin-film technology with features 33 times smaller than thick-film counterparts.Approach.Aluminium interdigitated comb structures under plasma-enhanced chemical vapour deposited passivation (SiOx, SiOxNy, SiOxNy+ SiC) were encapsulated in medical grade silicones, with a total of six passivation/silicone combinations. Samples were aged in phosphate-buffered saline at 67 ∘C for up to 694 days under a continuous ±5 V biphasic waveform. Periodic electrochemical impedance spectroscopy measurements monitored for leakage currents and degradation of the metal traces. Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy, focused-ion-beam and scanning-electron- microscopy were employed to determine any encapsulation material changes.Main results.No silicone delamination, passivation dissolution, or metal corrosion was observed during ageing. Impedances greater than 100 GΩ were maintained between the aluminium tracks for silicone encapsulation over SiOxNyand SiC passivations. For these samples the only observed failure mode was open-circuit wire bonds. In contrast, progressive hydration of the SiOxcaused its resistance to decrease by an order of magnitude.Significance.These results demonstrate silicone encapsulation offers excellent protection to thin-film conducting tracks when combined with appropriate inorganic thin films. This conclusion corresponds to previous reliability studies of silicone encapsulation in aqueous environments, but with a larger sample size. Therefore, we believe silicone encapsulation to be a realistic means of providing long-term protection for the circuits of implanted electronic medical devices.
Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a Brain-Computer Interface (BCI) system aimed to restore function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site. Antioxidants offer a means for mitigating oxidative stress and improving tissue health and MEA performance. Here, we investigate using the clinically available antioxidant dimethyl fumarate (DMF) to reduce the neuroinflammatory response and improve MEA performance in a rat MEA model. Daily treatment of DMF for 16 weeks resulted in a significant improvement in the recording capabilities of MEA devices during the sub-chronic (Weeks 5-11) phase (42% active electrode yield vs. 35% for control). However, these sub-chronic improvements were lost in the chronic implantation phase, as a more exacerbated neuroinflammatory response occurs in DMF-treated animals by 16 weeks post-implantation. Yet, neuroinflammation was indiscriminate between treatment and control groups during the sub-chronic phase. Although worse for chronic use, a temporary improvement (<12 weeks) in MEA performance is meaningful. Providing short-term improvement to MEA devices using DMF can allow for improved use for limited-duration studies. Further efforts should be taken to explore the mechanism behind a worsened neuroinflammatory response at the 16-week time point for DMF-treated animals to assess its usefulness to specific applications.