The barnacle, Chelonibia testudinaria (Linnaeus, 1758), is reported to associate with nearly every species of sea turtle and is particularly common on loggerheads, Caretta caretta (Linnaeus, 1758), with symptoms of Debilitated Turtle Syndrome (DTS). Here, we test recruitment rates of C. testudinaria on various natural and artificial substrata, including carapace from healthy and debilitated loggerheads. In addition, the sizes of individual barnacles were followed through time to estimate early growth rates and to provide attachment duration estimates. Floating racks holding replicate panels of four treatments (DTS turtle carapace scutes, healthy turtle carapace scutes, Plexiglas®, and slate tile) were placed at four independent sites in Charleston County, South Carolina. Panels were monitored for 34-54 d. Our findings indicate that C. testudinaria larvae recruit and grow at significantly higher rates along the open shore vs protected areas, but do not recruit differentially to the four substratum types. Individual barnacle growth was highly variable within and between sites and substratum types; the mean growth rate was 4.28 mm d-1 (95% CI: 3.42-5.14 mm d-1). However, due to the high variability in growth, this value cannot serve as a fine-scale indicator for attachment duration. Further experiments of substratum selection and long-term survival are needed to fully clarify the nature of the barnacle/turtle association.
Assessing the linkage between breeding and non-breeding areas has important implications for understanding the fundamental biology of and conserving animal species. This is a challenging task for marine species, and in sea turtles a combination of stable isotope analysis (SIA) and satellite telemetry has been increasingly used. The Northwest Atlantic (NWA) loggerhead ( Caretta caretta ) Regional Management Unit, one of the largest sea turtle populations in the world, provides an excellent opportunity to investigate key biological patterns as well as methodological aspects related to the use of stable isotopes to infer spatial distribution of turtles in foraging areas. We provide the first comprehensive assessment of the annual distribution of NWA adult female loggerheads among foraging areas and investigate the efficacy of various analytical approaches as well as the effect of sample size in these types of studies. A total of 5168 individual females were sampled from seven Management Units (MUs) between 2013-2018. We provide the first estimate of the proportion of females originating from each MU that uses each foraging area and show how this proportion varies over time. We also estimate the relative importance (in terms of number of turtles) of each foraging area to the overall loggerhead breeding aggregation nesting in Florida and in the NWA for each year of the study. The foraging area used by reproductively active females differs considerably across MUs. One of these, the Subtropical NWA, is by far the most important foraging area in terms of both number of individuals and genetic diversity, and therefore this region may be considered as a conservation priority. Through simulations, we show that limited sizes of sample groups (unknowns; training; priors) may result in false geographic differentiation and consequently mislead interpretations. We provide thresholds and methodological recommendations for future studies. This study establishes a fundamental baseline for monitoring the annual contribution of foraging area to a terrestrial-based breeding aggregation of a marine animal in a cost-effective way. This type of monitoring allows for early detection of changes in foraging distributions—a possible effect of climate change on marine ecosystems or of area-specific anthropogenic threats.
In this paper we will deal with some aspects of free relative clauses (FRC) in English, showing that there are certain differences between restrictive relative clauses (RRC) featuring whoever on the one hand and whichever / whatever on the other in terms of both their syntax and their semantics.In particular, we will focus on solving a long-standing puzzle that involves paradigms where the opposite of what the venerable *that-t fi lter would predict obtains.
Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.
Globally, sea turtle research and conservation efforts are underway to identify important high-use areas where these imperiled individuals may be resident for weeks to months to years. In the southeastern Gulf of Mexico, recent telemetry studies highlighted post-nesting foraging sites for federally endangered green turtles ( Chelonia mydas ) around the Florida Keys. In order to delineate additional areas that may serve as inter-nesting, migratory, and foraging hotspots for reproductively active females nesting in peninsular southwest Florida, we satellite-tagged 14 green turtles that nested at two sites along the southeast Gulf of Mexico coastline between 2017 and 2019: Sanibel and Keewaydin Islands. Prior to this study, green turtles nesting in southwest Florida had not previously been tracked and their movements were unknown. We used switching state space modeling to show that an area off Cape Sable (Everglades), Florida Bay, and the Marquesas Keys are important foraging areas that support individuals that nest on southwest Florida mainland beaches. Turtles were tracked for 39–383 days, migrated for a mean of 4 days, and arrived at their respective foraging grounds in the months of July through September. Turtles remained resident in their respective foraging sites until tags failed, typically after several months, where they established mean home ranges (50% kernel density estimate) of 296 km 2 . Centroid locations for turtles at common foraging sites were 1.2–36.5 km apart. The area off southwest Florida Everglades appears to be a hotspot for these turtles during both inter-nesting and foraging; this location was also used by turtles that were previously satellite tagged in the Dry Tortugas after nesting. Further evaluation of this important habitat is warranted. Understanding where and when imperiled yet recovering green turtles forage and remain resident is key information for designing surveys of foraging resources and developing additional protection strategies intended to enhance population recovery trajectories.