Embryonic stem cells (ESC) are totipotent cells that can differentiate into a large number of different cell types. Stem cell-derived, differentiated cells are of increasing importance as a potential source for non-proliferating cells (e.g., cardiomyocytes or neurons) for future tissue engineering applications. Differentiation of ESC is initiated by the formation of embryoid bodies (EB). Current protocols for the generation of EB are either of limited productivity or deliver EB with a large variation in size and differentiation state. To establish an efficient and robust EB production process, we encapsulated mouse ESC into alginate microbeads using various microencapsulation technologies. Microencapsulation and culturing of ESC in 1.1% alginate microbeads gives rise to discoid colonies, which further differentiate within the beads to cystic EB and later to EB containing spontaneously beating areas. However, if ESC are encapsulated into 1.6% alginate microbeads, differentiation is inhibited at the morula-like stage, so that no cystic EB can be formed within the beads. ESC colonies, which are released from 1.6% alginate microbeads, can further differentiate to cystic EB with beating cardiomyocytes. Extended supplementation of the growth medium with retinoic acid promotes differentiation to smooth muscle cells.
The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis. Disease progression in transgenic mouse models for dilated cardiomyopathy (DCM) was accompanied by specific M-band alterations. The dominant splice isoform in the embryonic heart, EH-myomesin, was strongly up-regulated in the failing heart and correlated with a decrease in cardiac function (R = −0.86). In addition, we have analyzed the expressions of myomesins in human myocardial biopsies (N = 40) obtained from DCM patients, DCM patients supported by a left ventricular assist device (LVAD), hypertrophic cardiomyopathy (HCM) patients and controls. Quantitative RT-PCR revealed that the EH-myomesin isoform was up-regulated 41-fold (P < 0.001) in the DCM patients compared to control patients. In DCM hearts supported by a LVAD and HCM hearts, the EH-myomesin expression was comparable to controls. Immunofluorescent analyses indicate that EH-myomesin was enhanced in a cell-specific manner, leading to a higher heterogeneity of the myocytes' cytoskeleton through the myocardial wall. We suggest that the up-regulation of EH-myomesin denotes an adaptive remodeling of the sarcomere cytoskeleton in the dilated heart and might serve as a marker for DCM in mouse and human myocardium.
Abstract Enhancers and long noncoding RNAs (lncRNAs) are key determinants of lineage specification during development. Here, we evaluate remodeling of the enhancer landscape and modulation of the lncRNA transcriptome during mesendoderm specification. We sort mesendodermal progenitors from differentiating embryonic stem cells (ESCs) according to Eomes expression, and find that enhancer usage is coordinated with mesendoderm-specific expression of key lineage-determining transcription factors. Many of these enhancers are associated with the expression of lncRNAs. Examination of ESC-specific enhancers interacting in three-dimensional space with mesendoderm-specifying transcription factor loci identifies MesEndoderm Transcriptional Enhancer Organizing Region ( Meteor ). Genetic and epigenetic manipulation of the Meteor enhancer reveal its indispensable role during mesendoderm specification and subsequent cardiogenic differentiation via transcription-independent and -dependent mechanisms. Interestingly, Meteor -deleted ESCs are epigenetically redirected towards neuroectodermal lineages. Loci, topologically associating a transcribed enhancer and its cognate protein coding gene, appear to represent therefore a class of genomic elements controlling developmental competence in pluripotency.
Osteopontin (OPN) is a sialic acid-rich, adhesive, extracellular matrix (ECM) protein with Arg-Gly-Asp cell-binding sequence that interacts with several integrins, including αvβ3. Since the ECM is a key regulator of mammary gland morphogenesis, and mammary epithelial cells express OPN at elevated levels, we sought to determine whether this protein plays a role in the postnatal mammary gland development. By generating transgenic mice that express OPN antisense-RNA (AS-OPN mice) in the mammary epithelia we achieved suppression of OPN production in this organ. The pregnant AS-OPN mice displayed a lack of mammary alveolar structures, a drastic reduction in the synthesis of β-casein, whey acidic milk protein, and lactation deficiency. In agreement with these findings, we uncovered that a mammary cell line, NMuMG, which undergoes both structural and functional differentiation on ECM-coated plates, when transfected with an antisense OPN-cDNA construct, failed to undergo such differentiation. Furthermore, the results of gel-invasion assays demonstrated that these cells manifest elevated matrix metalloproteinase (MMP) activity when OPN expression is significantly reduced. The identity of this proteinase as MMP-2 is confirmed by Western blotting, zymography, and inhibition of its activity by a specific inhibitor, TIMP-2. Taken together, our results demonstrate, for the first time, an essential role of OPN in mammary gland differentiation and that the molecular mechanism(s) of its action, at least in part, involves down-regulation of MMP-2.
Keywords: Signal transduction ; Cardiac regeneration ; Hypertrophy ; Fibrosis ; Transgenic models Reference EPFL-CONF-178480View record in Web of Science Record created on 2012-06-25, modified on 2017-05-12
The mechanisms controlling differentiation in adult cardiac precursor cells (CPCs) are still largely unknown. In this study, CPCs isolated from the human heart were found to produce predominantly smooth muscle cells but could be redirected to the cardiomyocyte fate by transient activation followed by inhibition of NOTCH signaling. NOTCH inhibition repressed MIR-143/145 expression, and blocked smooth muscle differentiation. Expression of the microRNAs is under control of CARMEN, a long noncoding RNA associated with an enhancer located in the MIR-143/145 locus and target of NOTCH signaling. The CARMEN/MIR-145/143 axis represents, therefore, a promising target to favor production of cardiomyocytes in cell replacement therapies.