The nitrogen found today in planetary atmospheres appears to come from two sources: N2 and condensed, nitrogen-containing compounds. On Jupiter and thus presumably on the other giant planets, the nitrogen is present mainly as ammonia but was apparently delivered primarily in the form of N2, whereas on the inner planets and Titan, the nitrogen is present as N2 but was delivered as condensed compounds, dominated by ammonia. This analysis is consistent with abundance data from the Interstellar Medium and models for the solar nebula. For Jupiter and the inner planets, it is substantiated by measurements of N-l5/N-14 and is supported by investigations of comets and meteorites, soon to be supplemented by solar wind data from the Genesis Mission. The Cassini-Huygens Mission may be able to constrain models for Saturn s ammonia abundance that could test the proportion of N2 captured by the planet. The Titan story is less direct, depending on studies of noble gases. These studies in turn suggest an evolutionary stage of the early Earth s atmosphere that included the ammonia and methane postulated by S. L. Miller (1953) in his classical experiments on the production of biogenic compounds.
A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems, and have long been thought to play a critical role in the development of potentially habitable planetary systems
One of the main objectives of the Cassini-Huygens mission is to explore Titan in great detail and to study in particular the many exobiological aspects of Titan, this exotic world which presents so many analogies with our planet. The Cassini orbiter and the Huygens probe, in a complementary way, will systematically study the many chemical and physical aspects of the different parts of what can be called the geofluid of Titan. Many of the twelve instruments of the Cassini orbiter and most of the six instruments of the Huygens probe will provide much information of crucial importance for our knowledge of the complexity of Titan's organic chemistry. This is particularly the case with the GC-M4S and ACP experiments which will provide the first in situ chemical (including isotopic and molecular) analyses of the gas and aerosol phases of Titan's atmosphere. Indeed, because of the presence of a dense atmosphere, mainly made of N2 with noticeable fraction of CH4, and of an environment very rich in organics, and of many couplings involved in the various parts of its geofluid, in spite of low temperatures and the absence of liquid water, Titan is a reference for studying prebiotic chemistry on a planetary scale. Many programs have recently been developed to study in detail Titan's chemistry, in direct connection with the Cassini-Huygens mission. They include new observations, development of photochemical models, laboratory determination of IR and UV spectra of organics of interest for Titan's atmosphere, and experimental studies, such as laboratory simulation of Titan's gas and aerosol organic chemistry. The paper will review the exobiological aspects of Titan. It will also present some of the new data concerning Titan s organic chemistry that have been obtained through the several possible approaches and discuss the exobiological implication of the potential scientific return of the Cassini-Huygens mission.