aims and scope Parasite Immunology is an international journal devoted to research on all aspects of parasite immunology in human and animal hosts.Emphasis has been placed on how hosts control parasites, and the immunopathological reactions which take place in the course of parasitic infections.The Journal welcomes original work on all parasites, particularly helminths, protozoa and ectoparasites.
Mixed parasitic infections are common in many parts of the world. However, little is known about how concurrent infections affect the immunity to and/or pathogenesis of each other. Protection and elimination of blood-stage Plasmodium chabaudi chabaudi AS in resistant mice are characterized by a sequential activation of CD4(+) Th1 and Th2 cells. The patent egg-laying stage of the murine model of Schistosoma mansoni is associated with a strong Th2 response to both Schistosoma and unrelated antigens. In this study, we investigated how infection of mice with S. mansoni would affect the immune response to and pathogenesis of a P. chabaudi infection. C57BL/6 mice infected with S. mansoni for 8 weeks were infected with blood-stage P. chabaudi. Malaria parasitemias were significantly higher in these mice than in mice infected with P. chabaudi only. In doubly infected mice, both spleen cell proliferative and Th2 responses to S. mansoni soluble egg antigen (SEA) or anti-CD3 were suppressed up to 1 month after the malaria infection. Findings for SEA-specific immunoglobulin M (IgM) and IgG serum antibody levels were similar. No significant effects were seen on P. chabaudi-induced gamma interferon responses. However, tumor necrosis factor alpha (TNF-alpha) production was significantly lower in double-infected mice. Thus, a defect in TNF-alpha production might contribute to the increased malaria parasitemias seen in S. mansoni-P. chabaudi-infected mice. Taken together, our data show that schistosoma and malaria infections profoundly affect each other, findings which might have implications for the development of vaccines.
HIV-1 infection disproportionately affects women in sub-Saharan Africa, where areas of high HIV-1 prevalence and Schistosoma haematobium endemicity largely overlap. Female genital schistosomiasis (FGS), an inflammatory disease caused by S. haematobium egg deposition in the genital tract, has been associated with prevalent HIV-1 infection. Elevated levels of the chemokines MIP-1α (CCL-3), MIP-1β (CCL-4), IP-10 (CXCL-10), and IL-8 (CXCL-8) in cervicovaginal lavage (CVL) have been associated with HIV-1 acquisition. We hypothesize that levels of cervicovaginal cytokines may be raised in FGS and could provide a causal mechanism for the association between FGS and HIV-1. In the cross-sectional BILHIV study, specimens were collected from 603 female participants who were aged 18–31 years, sexually active, not pregnant and participated in the HPTN 071 (PopART) HIV-1 prevention trial in Zambia. Participants self-collected urine, and vaginal and cervical swabs, while CVLs were clinically obtained. Microscopy and Schistosoma circulating anodic antigen (CAA) were performed on urine. Genital samples were examined for parasite-specific DNA by PCR. Women with FGS (n=28), defined as a positive Schistosoma PCR from any genital sample were frequency age-matched with 159 FGS negative (defined as negative Schistosoma PCR, urine CAA, urine microscopy, and colposcopy imaging) women. Participants with probable FGS (n=25) (defined as the presence of either urine CAA or microscopy in combination with one of four clinical findings suggestive of FGS on colposcope-obtained photographs) were also included, for a total sample size of 212. The concentrations of 17 soluble cytokines and chemokines were quantified by a multiplex bead-based immunoassay. There was no difference in the concentrations of cytokines or chemokines between participants with and without FGS. An exploratory analysis of those women with a higher FGS burden, defined by ≥2 genital specimens with detectable Schistosoma DNA (n=15) showed, after adjusting for potential confounders, a higher Th2 (IL-4, IL-5, and IL-13) and pro-inflammatory (IL-15) expression pattern in comparison to FGS negative women, with differences unlikely to be due to chance (p=0.037 for IL-4 and p<0.001 for IL-5 after adjusting for multiple testing). FGS may alter the female genital tract immune environment, but larger studies in areas of varying endemicity are needed to evaluate the association with HIV-1 vulnerability.
ABSTRACT Innate lymphoid cells (ILC) play a critical role in regulating immune responses at mucosal surfaces. Various subsets exist resembling T cell lineages defined by the expression of specific transcription factors. Thus, T-bet is expressed in ILC1 and Th1 cells. In order to further understand the functional roles of T-bet in ILC, we generated a fate-mapping mouse model that permanently marks cells and their progeny that are expressing, or have ever expressed T-bet. Here we have identified and characterised a novel ILC with characteristics of ILC1 and ILC2 that are “fate-mapped” for T-bet expression and arise early in neonatal life prior to establishment of a mature microbiome. These ILC1-ILC2 cells are critically dependent on T-bet and are able to express type 1 and type 2 cytokines at steady state, but not in the context of inflammation. These findings refine our understanding of ILC lineage regulation and stability and have important implications for the understanding of ILC biology at mucosal surfaces. SUMMARY Innate lymphoid cells (ILC) play a critical role in regulating immune responses at mucosal surfaces. Three distinct ILC groups have been described according to expression of subset defining transcription factors and other markers. In this study we characterize a novel ILC subset with characteristics of group 1 and group 2 ILC in vivo .
Expulsion of the gastrointestinal nematode Trichuris muris is mediated by a T helper (Th)2-type response, involving interleukin (IL)-4, IL-9 and IL-13. Here, we show that Th2 response-associated resistance is dependent on the presence of IL-1alpha and IL-1beta. When lymph node cells from naive IL-1alpha- or IL-1beta-deficient mice were subjected to Th2 polarization in vitro, they failed to polarize in the presence of IL-4 alone, but required the addition of exogenous IL-1alpha or IL-1beta. Furthermore, we demonstrate that both IL-1alpha- and IL-1beta-deficient mice are susceptible to chronic T. muris infection and that the inability to expel the worms is associated with a defect in the development of a Th2 response in the mesenteric lymph nodes. These results provide the first demonstration of the critical role of IL-1 in regulating Th2 responses during gastrointestinal nematode infection.
Expulsion of the gastrointestinal nematode Trichuris muris is mediated by a T helper (Th) 2 type response involving interleukin (IL)-4 and IL-13. Here we show that Th1 response–associated susceptibility involves prior activation of IL-18 and caspase-1 followed by IL-12 and interferon (IFN)-γ in the intestine. IL-18–deficient mice are highly resistant to chronic T. muris infection and in vivo treatment of normal mice with recombinant (r)IL-18 suppresses IL-13 and IL-4 secretion but does not affect IFN-γ. In vivo treatment of T. muris–infected IFN-γ–deficient mice with rIL-18 demonstrated that the inhibitory effect of IL-18 on IL-13 secretion is independent of IFN-γ. Hence, IL-18 does not function as an IFN-γ–inducing cytokine during chronic T. muris infection but rather as a direct regulator of Th2 cytokines. These results provide the first demonstration of the critical role of IL-18 in regulating Th cell responses during gastrointestinal nematode infection.
Spontaneous binding of uninfected erythrocytes to Plasmodium falciparum-infected erythrocytes (rosetting) has been suggested to have a critical role in the induction of cerebral malaria. We report here that rosetting can be mediated by several molecular mechanisms involving parasite polypeptides with M(r)s of 22,000 or 28,000, termed rosettins. Antibodies to either polypeptide disrupt rosettes in a strain-specific fashion. Rosettes of five of the seven isolates examined thus far are more easily disrpted by anti-22,000-M(r) rosettin antibodies than by anti-28,000-M(r) rosettin antibodies. Polyclonal anti-22,000-M(r) rosettin antibodies raised in mice or rabbits strongly and strain specifically stain the surface of nonfixed erythrocytes infected with late asexual stages of rosetting P. falciparum. Simultaneous antibody staining and rosetting are seen when the anti-22,000-M(r) rosettin antiserum is diluted so that only partial disruption of rosettes is obtained, confirming that the fluorescence-labelled infected erythrocytes are involved in rosetting. The 22,000-M(r) rosettin is accessible for surface iodination on erythrocytes infected with strains of rosetting parasites sensitive to anti-22,000-M(r) rosettin antibodies, whereas no labelling occurred on either normal erythrocytes or nonrosetting-P. falciparum-infected erythrocytes. Purified anti-22,000-M(r) rosettin serum immunoglobulin G immunoprecipitated three parasite-derived polypeptides with M(r)s of 22,000, 45,000 (doublet), and 50,000 from lysates of [35S]methionine-labelled, parasite-infected erythrocytes. Our results suggest that rosetting is mediated by strain-specific, antigenically distinct, P. falciparum-derived polypeptides.