Age-related decline in immunity is characterized by stem cell exhaustion, telomere shortening, and disruption of cell-to-cell communication, leading to increased patient risk of disease. Recent data have demonstrated that chronic inflammation exerts a strong influence on immune aging and is closely correlated with telomere length in a range of major pathologies. The current review discusses the impact of inflammation on immune aging, the likely molecular mediators of this process, and the various disease states that have been linked with immunosenescence. Emerging findings implicate NFkB, the major driver of inflammatory signaling, in several processes that regulate telomere maintenance and/or telomerase activity. While prolonged triggering of pattern recognition receptors is now known to promote immunosenescence, it remains unclear how this process is linked with the telomere complex or telomerase activity. Indeed, enzymatic control of telomere length has been studied for many decades, but alternative roles of telomerase and potential influences on inflammatory responses are only now beginning to emerge. Crosstalk between these pathways may prove to be a key molecular mechanism of immunosenescence. Understanding how components of immune aging interact and modify host protection against pathogens and tumors will be essential for the design of new vaccines and therapies for a wide range of clinical scenarios.
Sepsis and septic shock remain leading causes of morbidity and mortality for patients in the intensive care unit. During the early phase, immune cells produce various cytokines leading to prompt activation of the immune system. Polymorphonuclear leukocytes (PMNs) respond to different signals producing inflammatory factors and executing their antimicrobial mechanisms, resulting in the engulfment and elimination of invading pathogens. However, excessive activation caused by various inflammatory signals produced during sepsis progression can lead to the alteration of PMN signaling and subsequent defects in their functionality. Here, we analyzed samples from 34 patients in septic shock, focusing on PMNs gene expression and proteome changes associated with septic shock. We revealed that, compared to those patients who survived longer than five days, PMNs from patients who had fulminant sepsis were characterized by a dysfunctional hyper-activation, show altered metabolism, and recent exit from the cell cycle and signs of cellular lifespan. We believe that this multi-omics approach, although limited, pinpoints the alterations in PMNs' functionality, which may be rescued by targeted treatments.
Calcineurin (CN) inhibitors are effective clinical immunosuppressants but leave patients vulnerable to potentially fatal fungal infections. This study tested the hypothesis that CN inhibition interferes with antifungal immune defenses mediated by monocytes. We showed that NFAT is expressed by human monocytes, and is activated by exposure to fungal ligands. We confirmed that NFAT translocation potently activated target gene transcription using a human monocytic reporter cell line. Inhibition of CN-NFAT by cyclosporine A significantly reduced monocyte production of TNF-α, IL-10, and MCP-1 proteins in response to pattern recognition receptor ligands as well as to Aspergillus fumigatus conidia. Moreover, we revealed that human monocytes express the antifungal protein pentraxin-3 under control of NFAT. In conclusion, clinical CN inhibitors have the potential to interfere with the novel NFAT-dependent pentraxin-3 pathway as well as antifungal cytokine production in human monocytes, thereby impeding monocyte-mediated defenses against fungal infection in immune-suppressed patients.
Abstract Sepsis is characterized by dynamic changes of the immune system resulting in deregulated inflammation and failure of homoeostasis and can escalate to septic shock. Circulating monocytes and other innate immune cells are among the first ones to recognize and clear pathogens. Monocytes have an important role in sepsis and septic shock and have been studied as potential diagnostic markers. In total, forty‐two patients with septic shock were recruited and blood samples obtained within first 12 hours of ICU admission. We showed that frequency of classical and intermediate monocytes assessed at the time of admission to the intensive care unit are significantly distinct in patients with septic shock who survived longer that five days from those who died. These parameters correlate significantly with differences in serum levels of inflammatory cytokines MCP‐1, IL‐6, IL‐8, IL‐10, and IL‐18, and with the proportion of helper and cytotoxic T cells. The described changes in frequency of monocyte subsets and their activation status may predict short‐term septic shock survival and help with fast identification of the group of vulnerable patients, who may profit from tailored therapy.
COVID-19 manifestation is associated with a strong immune system activation leading to inflammation and subsequently affecting the cardiovascular system. The objective of the study was to reveal possible interconnection between prolongated inflammation and the development or exacerbation of long-term cardiovascular complications after COVID-19. We investigated correlations between humoral and cellular immune system markers together with markers of cardiovascular inflammation/dysfunction during COVID-19 onset and subsequent recovery. We analyzed 22 hospitalized patients with severe COVID-19 within three timepoints (acute, 1 and 6 months after COVID-19) in order to track the impact of COVID-19 on the long-term decline of the cardiovascular system fitness and eventual development of CVDs. Among the cytokines dysregulated during COVID-19 changes, we showed significant correlations of IL-18 as a key driver of several pathophysiological changes with markers of cardiovascular inflammation/dysfunction. Our findings established novel immune-related markers, which can be used for the stratification of patients at high risk of CVDs for further therapy.
Mesenchymal stromal cells (MSCs) combined with calcineurin-nuclear factor of activated T cell (CN-NFAT) inhibitors are being tested as a treatment for graft-versus-host disease (GvHD). The immunosuppressive properties of MSCs seem beneficial; however, their response during fungal infection, which is an important cause of mortality in patients with GvHD, is unknown. We report that MSCs phagocytose the fungal component zymosan, resulting in phosphorylation of spleen tyrosine kinase (Syk), increase in cytosolic calcium levels, and ultimately, increase in NFAT1 nuclear translocation. RNA sequencing analysis of zymosan-treated MSCs showed that CN-NFAT inhibition affects extracellular matrix (ECM) genes but not cytokine expression that is under the control of the NF-κB pathway. When coculturing MSCs or decellularized MSC-ECM with human peripheral blood mononuclear cells (PBMCs), selective NFAT inhibition in MSCs decreased cytokine expression by PBMCs. These findings reveal a dual mechanism underlying the MSC response to zymosan: while NF-κB directly controls inflammatory cytokine expression, NFAT impacts immune-cell functions by regulating ECM remodeling.
Sepsis is a life-threatening condition characterised by an overwhelming immune response and high fatality. While most research has focused on its acute phase, many sepsis survivors remain immunologically weakened leaving them susceptible to serious complications from even mild infections. The mechanisms underlying this prolonged immune dysregulation remain unclear, limiting effective interventions. Here, we analysed whether sepsis induced long-term ″training″ in hematopoietic stem and progenitor cells (HSPCs), imprinting changes that persist in their myeloid progeny. Peripheral blood analysis of 8 sepsis survivors, 12 patients with septic shock, and 10 healthy donors revealed a significant expansion of CD38+ progenitors in survivors, with increases in megakaryocyte-erythroid and granulocyte-monocyte progenitors, and reduced mature neutrophil counts. This shift suggests impaired granulopoiesis, favouring immature, immunosuppressive granulocytes. Differentiated macrophages from survivors′ HSPCs exhibited impaired metabolic pathways after lipopolysaccharide stimulation, with downregulation of tricarboxylic acid cycle and glycolysis genes, indicating altered immune metabolism. Pathway analysis revealed enhanced type-I interferon (IFN) and JAK-STAT signalling in survivors′ macrophages, reflective of potentially tolerance-prone reprogramming. Finally, exposing healthy donor HSPCs to IFNβ during macrophage differentiation reduced HSPC proliferation, increased apoptosis, and induced a metabolic shift towards glycolysis over mitochondrial respiration. Together, these findings suggest that sepsis induces lasting reprogramming in HSPCs leading to myeloid progeny with altered immune memory that might drive immune dysregulation in survivors. These data open avenues to explore potential targets to better manage long-term immune alterations in sepsis survivors.