Polymict ureilites are meteoritic breccias that provide insights into the differentiation history of the ureilite parent body. We have sampled a total of 24 clasts from the polymict ureilite Dar al Gani 319, representing a variety of lithologies such as mantle residues, cumulates and crustal fragments that are genetically related to monomict ureilites. In addition, we sampled four non-indigenous dark clasts and two chondrule-containing clasts from the same meteorite. We report on the petrology and the bulk mass-dependent and mass-independent magnesium and chromium isotope systematics of these clasts. The DaG 319 polymict ureilite consists predominantly of clasts related to Main Group ureilite residues (MG clasts) with varying Mg#s (0.74–0.91), as well as a significant fraction of olivine-orthopyroxene clasts related to Hughes Type ureilites (HT clasts) with consistently high Mg#s (∼0.89). In addition, DaG 319 contains less abundant feldspathic clasts that are thought to represent melts derived from the ureilite mantle. A significant mass-dependent Mg-isotope fractionation totaling Δμ25Mg = ∼450 ppm was found between isotopically light feldspathic clasts (μ25Mg = −305 ± 25 to 15 ± 12 ppm), MG clasts (μ25Mg = −23 ± 51 ppm) and HT clasts (μ25Mg = 157 ± 21 ppm). We suggest that this isotopic offset is the result of equilibrium isotope fractionation during melting in the presence of an isotopically light magnesite component. We propose Mg-carbonates to be stable in the upper ureilite mantle, and pure carbon phases such as graphite to be stable at higher pressures. This is consistent with HT clasts lacking carbon-related phases, whereas MG clasts contain abundant carbon. The timing of differentiation events for the ureilitic clasts are constrained by high precision 53Mn-53Cr systematics and 26Al-26Mg model ages. We show that a dichotomy of ages exist between the differentiation of main group ureilite residues and HT cumulates rapidly after CAI formation and later remelting of cumulates with corresponding feldspathic melts, at 3.8 ± 1.3 Myr after CAI formation. Assuming an initial 26Al/27Al abundance [(26Al/27Al)0 = 1.33-0.18+0.21 × 10−5] similar to the angrite parent body, the early melting event is best explained by heat production from 26Al whereas the late event is more likely caused by a major impact. Variations in 54Cr between MG clasts and HT clasts agree with a carbonaceous chondrite impactor onto the ureilite parent body. This impactor may be represented by abundant dark clasts found in polymict ureilites, which have μ26Mg∗ and μ54Cr signatures similar to CI chondrites. Similar volatile-rich dark clasts found in other meteorite breccias provide insights into the timing of volatile influx to the accretion region of the terrestrial planets.
Tracking the secular evolution of 142Nd/144Nd anomalies is important towards understanding the crust-mantle dynamics in the early Earth. Excessive scatter in the published data, however, precludes identifying the fine structure of 142Nd/144Nd evolution as the expected variability is on the order of few parts per million. We report ultra-high precision 142Nd/144Nd data for Eoarchean and Palaeoarchean rocks from the Isua Supracrustal Belt (SW Greenland) that show a well-resolved 142Nd/144Nd temporal variability suggesting progressive convective homogenisation of the Hadean Isua depleted mantle. This temporally decreasing 142Nd/144Nd signal provides a direct measure of early mantle dynamics, defining a stirring timescale of <250 Myr consistent with vigorous convective stirring in the early mantle. The 142Nd/144Nd evolution suggests protracted crustal residence times of ~1000-2000 Myr, inconsistent with modern-style plate tectonics in the Archean. In contrast, a stagnant-lid regime punctuated by episodes of mantle overturns accounts for the long life-time estimated here for the Hadean proto-crust.
Abstract Chondrules are major components of chondrites and are believed to drive the accretion of planetary embryos. As such, constraining the timing and origin of chondrules is central for understanding the early evolution of the solar system and the formation of planets. Enstatite chondrites (ECs) have isotope compositions for multiple elements that match that of the Earth and, thus, are considered to be good analogs of the precursor material from which the Earth formed. Here, we report the first high-precision mass-independent Cr isotope data of nine chondrules in one of the least-altered EH chondrites, Sahara 97096. Seven primitive chondrules show typical 54 Cr/ 52 Cr ratios of bulk ECs, whereas two chondrules have ratios similar to carbonaceous chondrites. The presence of two chondrules with a carbonaceous chondrite signature suggests early inward transport of material to the EC accretion region. The Mn/Cr ratios of the EC-like chondrules (except one with high Fe content) correlate with their 53 Cr/ 52 Cr isotope ratios, which we interpret as a fossil isochron, with a slope corresponding to a 53 Mn/ 55 Mn initial ratio of (5.01 ± 0.59) × 10 −6 (2 σ ). When anchored to the D’Orbigny angrite, this 53 Mn/ 55 Mn ratio returns an absolute age of 4565.7 ± 0.7 Ma for EC chondrule formation (precursor age), 1.6 ± 0.7 Ma after solar system formation. This protracted formation of EC chondrules may suggest that the mass transfer of outer solar system material started prior to the end of planetary embryo accretion, as chondrules could represent the main building blocks of terrestrial planets.
Primitive meteorites are samples of asteroidal bodies that contain a high proportion of chemically complex organic matter (COM) including prebiotic molecules such as amino acids, which are thought to have been delivered to Earth via impacts during the early history of the Solar System. Thus, understanding the origin of COM, including their formation pathway(s) and environment(s), is critical to elucidate the origin of life on Earth as well as assessing the potential habitability of exoplanetary systems. The Isheyevo CH/CBb carbonaceous chondrite contains chondritic lithic clasts with variable enrichments in 15N believed to be of outer Solar System origin. Using transmission electron microscopy (TEM-EELS) and in situ isotope analyses (SIMS and NanoSIMS), we report on the structure of the organic matter as well as the bulk H and N isotope composition of Isheyevo lithic clasts. These data are complemented by electron microprobe analyses of the clast mineral chemistry and bulk Mg and Cr isotopes obtained by inductively coupled plasma and thermal ionization mass spectrometry, respectively (MC-ICPMS and TIMS). Weakly hydrated (A) clasts largely consist of Mg-rich anhydrous silicates with local hydrated veins composed of phyllosilicates, magnetite and globular and diffuse organic matter. Extensively hydrated clasts (H) are thoroughly hydrated and contain Fe-sulfides, sometimes clustered with organic matter, as well as magnetite and carbonates embedded in a phyllosilicate matrix. The A-clasts are characterized by a more 15N-rich bulk nitrogen isotope composition (δ15N = 200–650‰) relative to H-clasts (δ15N = 50–180‰) and contain extremely 15N-rich domains with δ15N < 5000‰. The D/H ratios of the clasts are correlated with the degree of clast hydration and define two distinct populations, which we interpret as reflecting mixing between D-poor fluid(s) and distinct organic endmember components that are variably D-rich. High-resolution N isotope data of 15N-rich domains show that the lithic clast diffuse organic matter is typically more 15N-rich than globular organic matter. The correlated δ15N values and C/N ratios of nanoglobules require the existence of multiple organic components, in agreement with the H isotope data. The combined H and N isotope data suggest that the organic precursors of the lithic clasts are defined by an extremely 15N-poor (similar to solar) and D-rich component for H-clasts, and a moderately 15N-rich and D-rich component for A-clasts. In contrast, the composition of the putative fluids is inferred to include D-poor but moderately to extremely 15N-rich H- and N-bearing components. The variable 15N enrichments in H- and A-clasts are associated with structural differences in the N bonding environments of their diffuse organic matter, which are dominated by amine groups in H-clasts and nitrile functional groups in A-clasts. We suggest that the isotopically divergent organic precursors in Isheyevo clasts may be similar to organic moieties in carbonaceous chondrites (CI, CM, CR) and thermally recalcitrant organic compounds in ordinary chondrites, respectively. The altering fluids, which are inferred to cause the 15N enrichments observed in the clasts, may be the result of accretion of variable abundances of NH3 and HCN ices. Finally, using bulk Mg and Cr isotope composition of clasts, we speculate on the accretion regions of the various primitive chondrites and components and the origin of the Solar System's N and H isotope variability.