Ebola virus (EBOV), species Zaire ebolavirus, may persist in the semen of male survivors of Ebola virus disease (EVD). We conducted a study of male survivors of the 2014-2016 EVD outbreak in Liberia and evaluated their immune responses to EBOV. We report here findings from the serologic testing of blood for EBOV-specific antibodies, molecular testing for EBOV in blood and semen, and serologic testing of peripheral blood mononuclear cells (PBMCs) in a subset of study participants.We tested for EBOV RNA in blood by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and for anti-EBOV-specific immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies by enzyme-linked immunosorbent assay (ELISA) for 126 study participants. We performed PBMC analysis on a subgroup of 26 IgG-negative participants.All 126 participants tested negative for EBOV RNA in blood by qRT-PCR. The blood of 26 participants tested negative for EBOV-specific IgG antibodies by ELISA. PBMCs were collected from 23/26 EBOV IgG-negative participants. Of these, 1/23 participants had PBMCs that produced anti-EBOV-specific IgG antibodies upon stimulation with EBOV-specific glycoprotein (GP) and nucleoprotein (NP) antigens.The blood of EVD survivors, collected when they did not have symptoms meeting the case definition for acute or relapsed EVD, is unlikely to pose a risk for EBOV transmission. We identified 1 IgM/IgG negative participant who had PBMCs that produced anti-EBOV-specific antibodies upon stimulation. Immunogenicity following acute EBOV infection may exist along a spectrum, and absence of antibody response should not be exclusionary in determining an individual's status as a survivor of EVD.
SARS-CoV-2, the virus responsible for COVID-19, is causing a devastating worldwide pandemic, and there is a pressing need to understand the development, specificity, and neutralizing potency of humoral immune responses during acute infection. We report a cross-sectional study of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in a cohort of 44 hospitalized COVID-19 patients. RBD-specific IgG responses are detectable in all patients 6 days after PCR confirmation. Isotype switching to IgG occurs rapidly, primarily to IgG1 and IgG3. Using a clinical SARS-CoV-2 isolate, neutralizing antibody titers are detectable in all patients by 6 days after PCR confirmation and correlate with RBD-specific binding IgG titers. The RBD-specific binding data were further validated in a clinical setting with 231 PCR-confirmed COVID-19 patient samples. These findings have implications for understanding protective immunity against SARS-CoV-2, therapeutic use of immune plasma, and development of much-needed vaccines.
Since the emergence of SARS-CoV-2, research has shown that adult patients mount broad and durable immune responses to infection. However, response to infection remains poorly studied in infants/young children. In this study, we evaluated humoral responses to SARS-CoV-2 in 23 infants/young children before and after infection. We found that antibody responses to SARS-CoV-2 spike antigens peaked approximately 30 days after infection and were maintained up to 500 days with little apparent decay. While the magnitude of humoral responses was similar to an adult cohort recovered from mild/moderate COVID-19, both binding and neutralization titers to WT SARS-CoV-2 were more durable in infants/young children, with Spike and RBD IgG antibody half-life nearly 4X as long as in adults. The functional breadth of adult and infant/young children SARS-CoV-2 responses were comparable, with similar reactivity against panel of recent and previously circulating viral variants. Notably, IgG subtype analysis revealed that while IgG1 formed the majority of both adults' and infants/young children's response, IgG3 was more common in adults and IgG2 in infants/young children. These findings raise important questions regarding differential regulation of humoral immunity in infants/young children and adults and could have broad implications for the timing of vaccination and booster strategies in this age group.
T-bet and CD11c expression in B cells is linked with IgG2c isotype switching, virus-specific immune responses, and humoral autoimmunity. However, the activation requisites and regulatory cues governing T-bet and CD11c expression in B cells remain poorly defined. In this article, we reveal a relationship among TLR engagement, IL-4, IL-21, and IFN-γ that regulates T-bet expression in B cells. We find that IL-21 or IFN-γ directly promote T-bet expression in the context of TLR engagement. Further, IL-4 antagonizes T-bet induction. Finally, IL-21, but not IFN-γ, promotes CD11c expression independent of T-bet. Using influenza virus and Heligmosomoides polygyrus infections, we show that these interactions function in vivo to determine whether T-bet(+) and CD11c(+) B cells are formed. These findings suggest that T-bet(+) B cells seen in health and disease share the common initiating features of TLR-driven activation within this circumscribed cytokine milieu.
To assess the prevalence of retinopathy and its association with systemic morbidity and laboratory indices of coagulation and inflammatory dysfunction in severe COVID-19.
SARS-CoV-2 is currently causing a devastating pandemic and there is a pressing need to understand the dynamics, specificity, and neutralizing potency of the humoral immune response during acute infection. Herein, we report the dynamics of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in 44 COVID-19 patients. RBD-specific IgG responses were detectable in all patients 6 days after PCR confirmation. Using a clinical isolate of SARS-CoV-2, neutralizing antibody titers were also detectable in all patients 6 days after PCR confirmation. The magnitude of RBD-specific IgG binding titers correlated strongly with viral neutralization. In a clinical setting, the initial analysis of the dynamics of RBD-specific IgG titers was corroborated in a larger cohort of PCR-confirmed patients (n=231). These findings have important implications for our understanding of protective immunity against SARS-CoV-2, the use of immune plasma as a therapy, and the development of much-needed vaccines.
Patients with non-Hodgkin lymphoma including chronic lymphocytic leukemia (NHL/CLL) are at higher risk of severe SARS-CoV-2 infection. We investigated vaccine-induced antibody responses in patients with NHL/CLL against the original SARS-CoV-2 strain and variants of concern including B.1.167.2 (Delta) and B.1.1.529 (Omicron).