The outstanding physio-pathological role played by integrin receptors in living subjects motivates the enormous interest shown by scientists worldwide for this topic. More than twenty years of research has spanned across the structural and functional elucidation of these proteins and over their antagonism-based biomedical applications. The proof-of concept stage, aimed at identifying potent inhibitors, covered a decade of studies, and paved the way for a more advanced era of research where these antagonist molecules were thrown into the deep end of applicative studies. This review intends to summarize the major efforts conducted thus far and focuses on the design, synthesis and biomedical applications of cyclic RGD-containing alpha(v)beta(3) integrin antagonists, in both their small and macromolecular formats. In particular, Chapters 1 and 2 offer a comprehensive outlook on the rational basis for the design of integrin inhibitors, Chapter 3 chronicles the biological and medical applications of monofunctional RGD integrin ligands both in their monomeric and multimeric asset, and Chapter 4 illustrates the potential of RGD-based multifunctional systems in molecular medicine.
An 111In-labelled Amp-based RGD-DOTA conjugate was synthesized and evaluated in preclinical models of human melanoma as a novel integrin-targeted SPECT imaging tracer.
A vinylogous, silylative, and direct variant of the venerable Mukaiyama aldol reaction has been developed. Exploiting N-Boc-pyrrol-2(5H)-one as the conjugate donor, several aldehyde and ketone acceptors were scrutinized under the guidance of suitable dual Lewis acid−Lewis base activators to provide a varied repertoire of functionality-rich α,β-unsaturated-γ-amino-δ-silyloxy carbonyl structures, in useful yields and often with an exquisite level of diastereoselection.
Novel liposemipeptides hanging cyclic azabicycloalkane-RGD or aminoproline-RGD terminals were synthesized and incorporated into liposomal nanoparticles cAba/cAmpRGD-LNP5 3C/3D. Liposomes with similar composition and lacking semipeptide conjugates were constructed for comparison (LNP, 3A), and physical encapsulation of the anticancer doxorubicin drug in both targeted and untargeted liposomes was accomplished. Microstructural analysis performed by dynamic light scattering (DLS), small-angle neutron scattering (SANS), and electron paramagnetic resonance (EPR) revealed that the conjugated nanoparticles presented an average size of 80 nm and were constituted by 5 nm thick unilamellar liposome bilayer. Flow cytometry and fluorescent microscopy studies showed that 3C-DOXO and 3D-DOXO efficiently delivered the drug into the nuclei of both quiescent and proliferating cells even in a high serum concentration environment. The uptake of doxorubicin when carried by liposomes was faster than that of the free drug, and 30 min incubation was sufficient to load cell nuclei with doxorubicin. Targeted liposomes significantly induced cell death of human breast adenocarcinoma MCF7 cells (IC50 = 144 nM, 3C-DOXO; IC50 = 274 nM, 3D-DOXO), about 2- to 6-fold more potent than free doxorubicin or 3A-DOXO controls (IC50 = 527 and 854 nM, respectively). These results suggest that cAba/cAmpRGD liposomal nanoparticles hold promise for the rapid and efficient delivery of chemotherapeutic agents to αVβ3-expressing tumor cells.
Eleven γ-aminocyclopentane carboxylic acid (Acpca) platforms, including four dihydroxy representatives (19−22), three hydroxy analogues (34−36), and four deoxy derivatives (30−33), were prepared in a chiral nonracemic format. These simple units were then grafted onto an Arg-Gly-Asp (RGD) tripeptide framework by a mixed solid phase/solution protocol delivering an ensemble of 11 macrocyclic analogues of type cyclo-[-Arg-Gly-Asp-Acpca-], 1−11. The individual compounds were evaluated for their binding affinity toward the αVβ3 and αVβ5 integrin receptors. The analogue 10 exhibited a very interesting activity profile (IC50/αVβ3 = 1.5 nM; IC50/αVβ5 = 0.59 nM), comparable to that of reference compounds EMD121974 and ST1646. Closely related congeners 6, 8, and 9 also proved to be excellent dual binders with activity levels in the low nanomolar range. The three-dimensional (3D) NMR solution structures were determined, and docking studies to X-ray crystal structure of the extracellular segment of integrin αVβ3 in complex with the reference compound EMD121974 were performed on selected analogues to elucidate the interplay between structure and function in these systems and to evidence the subtle bases for receptorial recognition. The results prove that the principle of isosteric dipeptide replacement for peptidomimetics design and synthesis can be violated, without detriment to the development of highly effective integrin binders.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.