F eline u pper r espiratory t ract d isease (FURTD), often caused by infections etiologies, is a multifactorial syndrome affecting feline populations worldwide. Because of its highly transmissible nature, infectious FURTD is most prevalent anywhere cats are housed in groups such as animal shelters, and is associated with negative consequences such as decreasing adoption rates, intensifying care costs, and increasing euthanasia rates. Understanding the etiology and pathophysiology of FURTD is thus essential to best mitigate the negative consequences of this disease. Clinical signs of FURTD include acute respiratory disease, with a small fraction of cats developing chronic sequelae. It is thought that nasal mucosal microbiome changes play an active role in the development of acute clinical signs, but it remains unknown if the microbiome may play a role in the development and progression of chronic clinical disease. To address the knowledge gap surrounding how microbiomes link to chronic FURTD, we asked if microbial community structure of upper respiratory and gut microbiomes differed between cats with chronic FURTD signs and clinically normal cats. We selected 8 households with at least one cat exhibiting chronic clinical FURTD, and simultaneously collected samples from cohabitating clinically normal cats. Microbial community structure was assessed via 16S rDNA sequencing of both gut and nasal microbiome communities. Using a previously described ecophylogenetic method, we identified 136 and 89 microbial features within gut and nasal microbiomes respectively that significantly associated with presence of active FURTD clinical signs in cats with a history of chronic signs. Overall, we find that nasal and gut microbial community members associate with the presence of chronic clinical course, but more research is needed to confirm our observations.
In this study, we aimed to evaluate to what extent different assays of innate immunity reveal similar patterns of variation across ungulate species. We compared several measures of innate antibacterial immune function across seven different ungulate species using blood samples obtained from captive animals maintained in a zoological park. We measured mRNA expression of two receptors involved in innate pathogen detection, toll-like receptors 2 and 5 (TLR2 and 5), the bactericidal capacity of plasma, as well as the number of neutrophils and lymphocytes. Species examined included aoudad (Ammotragus lervia), American bison (Bison bison bison), yak (Bos grunniens), Roosevelt elk (Cervus canadensis roosevelti), fallow deer (Dama dama), sika deer (Cervus nippon), and Damara zebra (Equus quagga burchellii). Innate immunity varied among ungulate species. However, we detected strong, positive correlations between the different measures of innate immunity-specifically, TLR2 and TLR5 were correlated, and the neutrophil to lymphocyte ratio was positively associated with TLR2, TLR5, and bacterial killing ability. Our results suggest that ecoimmunological study results may be quite robust to the choice of assays, at least for antibacterial innate immunity; and that, despite the complexity of the immune system, important sources of variation in immunity in natural populations may be discoverable with comparatively simple tools.
Rift Valley fever (RVF) is an emerging zoonotic mosquito-borne infectious disease that has been identified as a risk for spread to other continents and can cause mass livestock mortality. In equatorial Africa, outbreaks of RVF are associated with high rainfall, when vector populations are at their highest. It is, however, unclear how RVF virus persists during the inter-epidemic periods and between seasons. Understanding inter-epidemic persistence as well as the role of vectors and hosts is paramount to creating effective management programmes for RVF control. We created a mathematical model for the spread of RVF and used the model to explore different scenarios of persistence including vertical transmission and alternate wildlife hosts, with a case study on buffalo in Kruger National Park, South Africa. Our results suggest that RVF persistence is a delicate balance between numerous species of susceptible hosts, mosquito species, vertical transmission and environmental stochasticity. Further investigations should not focus on a single species, but should instead consider a myriad of susceptible host species when seeking to understand disease dynamics.
In species where offspring survival is highly variable relative to adult survival, such as bighorn sheep ( Ovis canadensis ), physiological indicators of maternal investment could clarify the functional mechanisms of life history trade-offs and serve as important predictors of population dynamics. From a management perspective, simple predictors of juvenile survival measured non-lethally from maternal samples could aid in identifying at-risk populations or individuals before significant mortality occurs. Blood biochemical parameters can offer low-cost insights into animal health and physiology, therefore we sought to develop a simple biochemical predictor of juvenile survival based on maternal blood samples. We measured biochemical indicators of energy balance in adult bighorn sheep at a single time point in January or February, and then monitored survival through August of the same year to assess how those measures related to survival of individual adults and their juvenile offspring. Juvenile survival was lower over the subsequent spring and summer when maternal adult serum beta-hydroxybutyric acid (β-HBA) concentration was high, indicating a negative energy balance in the mothers. However, serum β-HBA did not correlate with adult survival over the same period. Our findings suggest that even when maternal body condition is high, short-term caloric deficit may be sufficient trigger to decrease investment in offspring survival. This mechanism could protect adult females from investing heavily in juvenile survival when resources become too limited to support population growth. Our study suggests that β-HBA could be a powerful monitoring tool for bighorn sheep and other threatened ruminant populations under resource limitation.
The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Valley fever (RVF) in a competent reservoir host, African buffalo, combining data from a natural outbreak of RVF in captive buffalo at a buffalo breeding facility in 2008 with data collected from a neighbouring free-living herd of African buffalo in Kruger National Park. RVF infection was twice as likely in individual BTB+ buffalo as in BTB- buffalo, which, according to a mathematical model, may increase RVF outbreak size at the population level. In addition, co-infection was associated with a far higher rate of fetal abortion than other infection states. Immune interactions between BTB and RVF may underlie both of these interactions, since animals with BTB had decreased innate immunity and increased pro-inflammatory immune responses. This study is one of the first to demonstrate how the consequences of emerging infections extend beyond direct effects on host health, potentially altering the dynamics and fitness effects of infectious diseases that had previously existed in the ecosystem on free-ranging wildlife populations.
AbstractReduced energy intake can compromise the ability of a mammal to maintain body temperature within a narrow 24-h range, leading to heterothermy. To investigate the main drivers of heterothermy in a bulk grazer, we compared abdominal temperature, body mass, body condition index, and serum leptin levels in 11 subadult Cape buffalo (Syncerus caffer caffer) during a drought year and a nondrought year. Low food availability during the drought year (as indexed by grass biomass, satellite imagery of vegetation greenness, and fecal chlorophyll) resulted in lower body condition index, lower body mass relative to that expected for an equivalent-aged buffalo, and lower leptin levels. The range of 24-h body temperature rhythm was 2°C during the nondrought year and more than double that during the drought year, and this was caused primarily by a lower minimum 24-h body temperature rhythm during the cool dry winter months. After rain fell and vegetation greenness increased, the minimum 24-h body temperature rhythm increased, and the range of 24-h body temperature rhythm was smaller than 2°C. In order of importance, poor body condition, low minimum 24-h air temperature, and low serum leptin levels were the best predictors of the increase in the range of 24-h body temperature rhythm. While the thermoregulatory role of leptin is not fully understood, the association between range of 24-h body temperature rhythm and serum leptin levels provides clues about the underlying mechanism behind the increased heterothermy in large mammals facing food restriction.
The dynamics of directly transmitted pathogens in natural populations are likely to result from the combined effects of host traits, pathogen biology, and interactions among pathogens within a host. Discovering how these factors work in concert to shape variation in pathogen dynamics in natural host-multi-pathogen systems is fundamental to understanding population health. Here, we describe temporal variation in incidence and then elucidate the effect of hosts trait, season and pathogen co-occurrence on host infection risk using one of the most comprehensive studies of co-infection in a wild population: a suite of seven directly transmitted viral and bacterial respiratory infections from a 4-year study of 200 free-ranging African buffalo Syncerus caffer. Incidence of upper respiratory infections was common throughout the study-five out of the seven pathogens appeared to be consistently circulating throughout our study population. One pathogen exhibited clear outbreak dynamics in our final study year and another was rarely detected. Co-infection was also common in this system: The strongest indicator of pathogen occurrence for respiratory viruses was in fact the presence of other viral respiratory infections. Host traits had minimal effects on odds of pathogen occurrence but did modify pathogen-pathogen associations. In contrast, only season predicted bacterial pathogen occurrence. Though a combination of environmental, behavioural, and physiological factors work together to shape disease dynamics, we found pathogen associations best determined infection risk. Our study demonstrates that, in the absence of very fine-scale data, the intricate changes among these factors are best represented by co-infection.
Adequate predictions of mosquito-borne disease risk require an understanding of the relevant drivers governing mosquito populations. Since previous studies have focused mainly on the role of temperature, here we assessed the effects of other important ecological variables (predation, nutrient availability, presence of conspecifics) in conjunction with the role of temperature on mosquito life history parameters. We carried out two mesocosm experiments with the common brown house mosquito, Culex pipiens, a confirmed vector for West Nile Virus, Usutu and Sindbis, and a controphic species; the harlequin fly, Chironomus riparius. The first experiment quantified interactions between predation by Notonecta glauca L. (Hemiptera: Notonectidae) and temperature on adult emergence. The second experiment quantified interactions between nutrient additions and temperature on larval mortality and adult emergence. Results indicate that 1) irrespective of temperature, predator presence decreased mosquito larval survival and adult emergence by 20–50%, 2) nutrient additions led to a 3-4-fold increase in mosquito adult emergence and a 2-day decrease in development time across all temperature treatments, 3) neither predation, nutrient additions nor temperature had strong effects on the emergence and development rate of controphic Ch. riparius. Our study suggests that, in addition to of effects of temperature, ecological bottom-up (eutrophication) and top-down (predation) drivers can have strong effects on mosquito life history parameters. Current approaches to predicting mosquito-borne disease risk rely on large-scale proxies of mosquito population dynamics, such as temperature, vegetation characteristics and precipitation. Local scale management actions, however, will require understanding of the relevant top-down and bottom-up drivers of mosquito populations.