Background: Clinical studies in multiple sclerosis (MS) often require accurate measurement of walking distance. Utilisation of electronic devices could theoretically improve this. Mobile devices have the potential to continuously monitor health by collecting movement data. Popular fitness trackers record steps taken and distance travelled, typically using a fixed-stride length. However, applications using fixed-stride length may be less accurate in those with altered gait patterns. While useful for everyday purposes, medical monitoring requires greater accuracy. Objective: Our aim was to determine the agreement and reliability of using a smartphone application to measure distance walked. Method: A phone application (mSteps) was developed and tested in a pilot study and then a validation study, looking at an indoor and outdoor setting with people with multiple sclerosis (PwMS) and a control cohort. Results: In the pilot study, the 95% limits of agreement (LOA) for outdoor tracking in control cohort lay within the a priori defined limit; however, the indoor tracking in both cohorts did not meet the defined limit. The app was then successfully validated outdoors in PwMS. Conclusion: mSteps could be used to accurately measure distance outdoors in PwMS. There is still a need for solutions to accurately and reliably measure distance walked indoors.
Abstract Background Slower than planned recruitment is a major factor contributing to the delay or failure of randomised controlled trials to report on time. There is a limited evidence base regarding the optimisation of recruitment strategies. Here we performed an observational review of our experience in recruitment for two large randomised controlled trials for people with secondary progressive multiple sclerosis. We aimed to explicitly determine those factors which can facilitate trial recruitment in progressive neurodegenerative disease. Methods Recruitment data from the sequential MS-SMART [NCT01910259] and MS-STAT2 [NCT03387670] UK randomised controlled trials was reviewed from the largest recruiting site, University College London (UCL). The trial population was similar which allowed comparison over the two recruitment periods of 2015–2016 and 2018–2021. This included sources of referral, progress through stages of recruitment, reasons for participant ineligibility and the impact of publicity events upon recruitment. Results In MS-SMART, 18% of patients contacted were enrolled, compared to 27% for MS-STAT2. Online registration of interest portals provided the greatest number of referrals (76% in MS-SMART, and 51% in MS-STAT2), with publicity in national media outlets producing a demonstrable increase in the number of potential participants. The introduction of an online self-screening questionnaire for MS-STAT2 resulted in 67% of potential participants (3080 of 4605) automatically determining their own ineligibility . In both studies, however, around 60% of those directly telephoned to discuss the study were not eligible, with difficulties related to travel to trial visits, or excluded medication, being the most common issues. Eighty-four percent of those deemed potentially eligible following telephone calls were enrolled in the MS-STAT2 study, compared to only 55% for MS-SMART. Conclusions Through a detailed review of recruiting participants at the largest centre into two large randomised controlled trials with similar entry criteria, we have identified a number of approaches that may improve recruitment efficiency. We highlight here the importance of mandatory online self-screening questionnaires, a coordinated publicity campaign, and simple interventions such as eligibility checklists and appointment reminders. Recruitment approaches should be further assessed through a studies within a trial (SWAT) design. Trial registration MS-SMART: NCT01910259 ; registered July 2013 and MS-STAT2: NCT03387670 ; registered Jan 2018
Background: Although often overlooked, patient and public involvement (PPI) is vital when considering the design and delivery of complex and adaptive clinical trial designs for chronic health conditions such as multiple sclerosis (MS). Methods: We conducted a rapid review to assess current status of PPI in the design and conduct of clinical trials in MS over the last 5 years. We provide a case study describing PPI in the development of a platform clinical trial in progressive MS. Results: We identified only eight unique clinical trials that described PPI as part of articles or protocols; nearly, all were linked with funders who encourage or mandate PPI in health research. The OCTOPUS trial was co-designed with people affected by MS. They were central to every aspect from forming part of a governance group shaping the direction and strategy, to the working groups for treatment selection, trial design and delivery. They led the PPI strategy which enabled a more accessible, acceptable and inclusive design. Conclusion: Active, meaningful PPI in clinical trial design increases the quality and relevance of studies and the likelihood of impact for the patient community. We offer recommendations for enhancing PPI in future MS clinical trials.
BackgroundNeurodegeneration is the pathological substrate that causes major disability in secondary progressive multiple sclerosis. A synthesis of preclinical and clinical research identified three neuroprotective drugs acting on different axonal pathobiologies. We aimed to test the efficacy of these drugs in an efficient manner with respect to time, cost, and patient resource.MethodsWe did a phase 2b, multiarm, parallel group, double-blind, randomised placebo-controlled trial at 13 clinical neuroscience centres in the UK. We recruited patients (aged 25–65 years) with secondary progressive multiple sclerosis who were not on disease-modifying treatment and who had an Expanded Disability Status Scale (EDSS) score of 4·0–6·5. Participants were randomly assigned (1:1:1:1) at baseline, by a research nurse using a centralised web-based service, to receive twice-daily oral treatment of either amiloride 5 mg, fluoxetine 20 mg, riluzole 50 mg, or placebo for 96 weeks. The randomisation procedure included minimisation based on sex, age, EDSS score at randomisation, and trial site. Capsules were identical in appearance to achieve masking. Patients, investigators, and MRI readers were unaware of treatment allocation. The primary outcome measure was volumetric MRI percentage brain volume change (PBVC) from baseline to 96 weeks, analysed using multiple regression, adjusting for baseline normalised brain volume and minimisation criteria. The primary analysis was a complete-case analysis based on the intention-to-treat population (all patients with data at week 96). This trial is registered with ClinicalTrials.gov, NCT01910259.FindingsBetween Jan 29, 2015, and June 22, 2016, 445 patients were randomly allocated amiloride (n=111), fluoxetine (n=111), riluzole (n=111), or placebo (n=112). The primary analysis included 393 patients who were allocated amiloride (n=99), fluoxetine (n=96), riluzole (n=99), and placebo (n=99). No difference was noted between any active treatment and placebo in PBVC (amiloride vs placebo, 0·0% [95% CI −0·4 to 0·5; p=0·99]; fluoxetine vs placebo −0·1% [–0·5 to 0·3; p=0·86]; riluzole vs placebo −0·1% [–0·6 to 0·3; p=0·77]). No emergent safety issues were reported. The incidence of serious adverse events was low and similar across study groups (ten [9%] patients in the amiloride group, seven [6%] in the fluoxetine group, 12 [11%] in the riluzole group, and 13 [12%] in the placebo group). The most common serious adverse events were infections and infestations. Three patients died during the study, from causes judged unrelated to active treatment; one patient assigned amiloride died from metastatic lung cancer, one patient assigned riluzole died from ischaemic heart disease and coronary artery thrombosis, and one patient assigned fluoxetine had a sudden death (primary cause) with multiple sclerosis and obesity listed as secondary causes.InterpretationThe absence of evidence for neuroprotection in this adequately powered trial indicates that exclusively targeting these aspects of axonal pathobiology in patients with secondary progressive multiple sclerosis is insufficient to mitigate neuroaxonal loss. These findings argue for investigation of different mechanistic targets and future consideration of combination treatment trials. This trial provides a template for future simultaneous testing of multiple disease-modifying medicines in neurological medicine.FundingEfficacy and Mechanism Evaluation (EME) Programme, an MRC and NIHR partnership, UK Multiple Sclerosis Society, and US National Multiple Sclerosis Society.
The MS-STAT2 study is a Phase III, 3 year multi-centre, randomised, placebo-controlled trial assessing the efficacy of 80mg simvastatin vs. placebo in secondary progressive multiple sclerosis (SPMS). Building upon the promising results of the MS-STAT1 study, it is an academically led study funded through a collaboration of the NIHR HTA, MS Society (UK), National MS Society (US), and the Rosetrees Trust. Here we will provide an update on the trial design and progress, including: The agreed trial extension period Adaptations to recruitment targets and trial design An update on trial sites where patients can be referred An update on current trial progress thomas.williams@nhs.net
Abstract Background and purpose There is increasing evidence that cardiovascular risk (CVR) contributes to disability progression in multiple sclerosis (MS). CVR is particularly prevalent in secondary progressive MS (SPMS) and can be quantified through validated composite CVR scores. The aim was to examine the cross‐sectional relationships between excess modifiable CVR, whole and regional brain atrophy on magnetic resonance imaging, and disability in patients with SPMS. Methods Participants had SPMS, and data were collected at enrolment into the MS‐STAT2 trial. Composite CVR scores were calculated using the QRISK3 software. Prematurely achieved CVR due to modifiable risk factors was expressed as QRISK3 premature CVR, derived through reference to the normative QRISK3 dataset and expressed in years. Associations were determined with multiple linear regressions. Results For the 218 participants, mean age was 54 years and median Expanded Disability Status Scale was 6.0. Each additional year of prematurely achieved CVR was associated with a 2.7 mL (beta coefficient; 95% confidence interval 0.8–4.7; p = 0.006) smaller normalized whole brain volume. The strongest relationship was seen for the cortical grey matter (beta coefficient 1.6 mL per year; 95% confidence interval 0.5–2.7; p = 0.003), and associations were also found with poorer verbal working memory performance. Body mass index demonstrated the strongest relationships with normalized brain volumes, whilst serum lipid ratios demonstrated strong relationships with verbal and visuospatial working memory performance. Conclusions Prematurely achieved CVR is associated with lower normalized brain volumes in SPMS. Future longitudinal analyses of this clinical trial dataset will be important to determine whether CVR predicts future disease worsening.
Background Neuroprotective drugs are needed to slow or prevent neurodegeneration and disability accrual in secondary progressive multiple sclerosis. Amiloride, fluoxetine and riluzole are repurposed drugs with potential neuroprotective effects. Objectives To assess whether or not amiloride, fluoxetine and riluzole can reduce the rate of brain volume loss in people with secondary progressive multiple sclerosis over 96 weeks. The secondary objectives that were assessed were feasibility of a multiarm trial design approach, evaluation of anti-inflammatory effects, clinician- and patient-reported efficacy and three mechanistic substudies. Design A multicentre, multiarm, randomised, double-blind, placebo-controlled, parallel-group Phase IIb trial with follow-up at 4, 8, 12, 24, 36, 48, 72 and 96 weeks. Patients, investigators (including magnetic resonance imaging analysts), and treating and independent assessing neurologists were blinded to the treatment allocation. The target sample size was 440 patients. Setting Thirteen UK clinical neuroscience centres. Participants Participants were aged 25–65 years, had secondary progressive multiple sclerosis with evidence of disease progression independent of relapses in the previous 2 years, and had an Expanded Disability Status Scale score of 4.0–6.5. Patients were ineligible if they could not have a magnetic resonance imaging scan; had a relapse or steroids in the previous 3 months; or had epilepsy, depression, bipolar disorder, glaucoma, bleeding disorders or significant organ comorbidities. Exclusion criteria were concurrent disease-modified treatments, immunosuppressants or selective serotonin reuptake inhibitors. Interventions Participants received amiloride (5 mg), fluoxetine (20 mg), riluzole (50 mg) or placebo (randomised 1 : 1 : 1 : 1) twice daily. Main outcome measures The primary end point was magnetic resonance imaging-derived percentage brain volume change at 96 weeks. Secondary end points were new/enlarging T2 lesions, pseudoatrophy, and clinician- and patient-reported measures (including the Expanded Disability Status Scale, Multiple Sclerosis Functional Composite, Symbol Digit Modalities Test, low-contrast letter visual acuity, Multiple Sclerosis Impact Scale 29 items, version 2, Multiple Sclerosis Walking Scale, version 2, and questionnaires addressing pain and fatigue). The exploratory end points included measures of persistent new T1 hypointensities and grey matter volume changes. The substudies were advanced magnetic resonance imaging, optical coherence tomography and cerebrospinal fluid analyses. Results Between December 2014 and June 2016, 445 patients were randomised (analysed) to amiloride [ n = 111 (99)], fluoxetine [ n = 111 (96)], riluzole [ n = 111 (99)] or placebo [ n = 112 (99)]. A total of 206 randomised patients consented to the advanced magnetic resonance imaging substudy, 260 consented to the optical coherence tomography substudy and 70 consented to the cerebrospinal fluid substudy. No significant difference was seen between the active drugs and placebo in percentage brain volume change at week 96 as follows (where negative values mean more atrophy than placebo): amiloride minus placebo 0.0% (Dunnett-adjusted 95% confidence interval –0.4% to 0.5%), fluoxetine minus placebo –0.1% (Dunnett-adjusted 95% confidence interval –0.5% to 0.3%); riluzole minus placebo –0.1% (Dunnett-adjusted 95% confidence interval –0.6% to 0.3%). There was good adherence to study drugs. The proportion of patients experiencing adverse events was similar in the treatment and placebo groups. There were no emergent safety issues. Limitations There was a lower than expected uptake in the cerebrospinal fluid substudy. Conclusions A multiarm Phase II paradigm is efficient in determining which neuroprotective agents to take through to Phase III trials. Amiloride, fluoxetine and riluzole were not effective in reducing the brain atrophy rate in people with secondary progressive multiple sclerosis. Mechanistic pathobiological insight was gained. Future work To use the information gained from the Multiple Sclerosis-Secondary Progressive Multi-Arm Randomisation Trial (MS-SMART) to inform future trial design as new candidate agents are identified. Trial registration Current Controlled Trials ISRCTN28440672, NCT01910259 and EudraCT 2012-005394-31. Funding This project was funded by the Efficacy and Mechanism Evaluation (EME) programme, a Medical Research Council and National Institute for Health Research (NIHR) partnership. This will be published in full in Efficacy and Mechanism Evaluation ; Vol. 7, No. 3. See the NIHR Journals Library website for further project information. This trial also received funding from the UK MS Society and the US National Multiple Sclerosis Society.
The brain reserve hypothesis posits that larger maximal lifetime brain growth (MLBG) may confer protection against physical disability in multiple sclerosis (MS). Larger MLBG as a proxy for brain reserve, has been associated with reduced progression of physical disability in patients with early MS; however, it is unknown whether this association remains once in the secondary progressive phase of MS (SPMS). Our aim was to assess whether larger MLBG is associated with decreased physical disability progression in SPMS.
There are few treatments shown to slow disability progression in progressive multiple sclerosis (PMS). One challenge has been efficiently testing the pipeline of candidate therapies from preclinical studies in clinical trials. Multi-arm multistage (MAMS) platform trials may accelerate evaluation of new therapies compared to traditional sequential clinical trials. We describe a MAMS design in PMS focusing on selection of interim and final outcome measures, sample size, and statistical considerations. The UK MS Society Expert Consortium for Progression in MS Clinical Trials reviewed recent phase II and III PMS trials to inform interim and final outcome selection and design measures. Simulations were performed to evaluate trial operating characteristics under different treatment effect, recruitment rate, and sample size assumptions. People with MS formed a patient and public involvement group and contributed to the trial design, ensuring it would meet the needs of the MS community. The proposed design evaluates 3 experimental arms compared to a common standard of care arm in 2 stages. Stage 1 (interim) outcome will be whole brain atrophy on MRI at 18 months, assessed for 123 participants per arm. Treatments with sufficient evidence for slowing brain atrophy will continue to the second stage. The stage 2 (final) outcome will be time to 6-month confirmed disability progression, based on a composite clinical score comprising the Expanded Disability Status Scale, Timed 25-Foot Walk test, and 9-Hole Peg Test. To detect a hazard ratio of 0.75 for this primary final outcome with 90% power, 600 participants per arm are required. Assuming one treatment progresses to stage 2, the trial will recruit ≈1,900 participants and last ≈6 years. This is approximately two-thirds the size and half the time of separate 2-arm phase II and III trials. The proposed MAMS trial design will substantially reduce duration and sample size compared to traditional clinical trials, accelerating discovery of effective treatments for PMS. The design was well-received by people with multiple sclerosis. The practical and statistical principles of MAMS trial design may be applicable to other neurodegenerative conditions to facilitate efficient testing of new therapies.