Many benthic invertebrate taxa possess planktonic early life stages which drift with water currents and contribute to dispersal of the species, sometimes reaching areas beyond the current ranges of the adults. Until recently, it had been difficult to identify planktonic larvae to species level due to lack of distinguishing features, preventing detection of expatriate species. Here, we used DNA metabarcoding of the COI gene to obtain species-level identification of early life stages of benthic invertebrates in zooplankton samples from the Barents Sea and around Svalbard, where, regionally, large volumes of warm Atlantic Water enter the Arctic from the south. We compared the larval community in the water column to the adult community on the seafloor to identify mismatches. In addition, we implemented particle tracking analysis to identify the possible areas of origin of larvae. Our results show that 30-45% of larval taxa—largely polychaetes and nudibranchs—were not local to the sampling area, though most were found nearby in the Barents Sea. In the particle tracking analysis, some larvae originating along the Norwegian coast were capable of reaching the northwest coast of Svalbard within 3 mo, but larvae found east of Svalbard had a more constrained possible area of origin which did not extend to the Norwegian coast. This study highlights largely regional-scale larval connectivity in the Barents Sea but demonstrates the potential for some long-lived larval taxa to travel to Svalbard and the Barents Sea from further south.
Pelagic larval stages (meroplankton) of benthic invertebrates seasonally make up a significant proportion of planktonic communities, as well as determine the distribution of their benthic adult stages, yet are frequently overlooked by both plankton and benthic studies. Within the Arctic, the role of meroplanktonic larvae may be particularly important in regions of inflow from sub-Arctic regions, where they can serve as vectors of advection of temperate species into the Arctic. In this study, we describe the links between the distribution of larvae and adult benthic communities of bivalves, echinoderms, select decapods and cnidarians on the Pacific-influenced Chukchi Sea shelf during August-September in the time period 2004-2015 using traditional morphological and molecular tools to resolve taxonomic diversity. For most taxa, we observed little regional overlap between the distribution of larvae and adults of the same taxon; however, larvae of some organisms (e.g., the burrowing anemone Cerianthus sp., the sand dollar Echinarachnius parma) were only observed near populations of adult organisms. Larval stages of species not commonly observed in the Chukchi Sea benthos were also observed in the plankton; overall, shelf meroplanktonic communities were numerically dominated by larvae of coastal hard-bottom taxa, rather than local soft-bottom shelf species. Our results suggest that most larvae that we observe on the shelf are advected from other areas rather than produced locally, and most likely will not successfully settle to the benthos. Seasonality and distribution of water masses were the most important parameters shaping meroplankton communities. We discuss the implications of changing oceanographic and climatic conditions on the potential of range extensions by temperate species into the Arctic Ocean.
In many species of marine benthic invertebrates, a planktonic larval phase plays a critical role in dispersal. Very little is known about the larval biology of most species, however, in part because species identification has historically been hindered by the microscopic size and morphological similarity among related taxa. This study aimed to determine the taxonomic composition and seasonal distribution of meroplankton in the Barents Sea, across the Polar Front. We collected meroplankton during five time points seasonally and used high-throughput DNA barcoding of individual larvae to obtain species-level information on larval seasonality. We found that meroplankton was highly diverse (72 taxa from eight phyla) and present in the Barents Sea year-round with a peak in abundance in August and November, defying the conventional wisdom that peak abundance would coincide with the spring phytoplankton bloom. Ophiuroids, bivalves, and polychaetes dominated larval abundance while gastropods and polychaetes accounted for the bulk of the taxon diversity. Community structure varied seasonally and total abundance was generally higher south of the Polar Front while taxon richness was overall greater to the north. Of the species identified, most were known inhabitants of the Barents Sea. However, the nemertean Cephalothrix iwatai and the brittle star Ophiocten gracilis were abundant in the meroplankton despite never having been previously recorded in the northern Barents Sea. The new knowledge on seasonal patterns of individual meroplanktonic species has implications for understanding environment-biotic interactions in a changing Arctic and provides a framework for early detection of potential newcomers to the system.
Abstract Although metabarcoding is a well-established tool for describing diversity of pelagic communities, its quantitative value is still controversial, with poor correlations previously reported between organism abundance/biomass and sequence reads. In this study, we explored an enhanced quantitative approach by metabarcoding whole zooplankton communities using a highly degenerate primer set for the mitochondrial marker cytochrome oxidase I and compared the results to biomass estimates obtained using the traditional morphological approach of processing zooplankton samples. As expected, detected species richness using the metabarcoding approach was 3–4 times higher compared to morphological processing, with the highest differences found in the meroplankton fraction. About 75% of the species identified using microscopy were also recovered in the metabarcoding run. Within the taxa detected using both approaches, the relative numbers of sequence counts showed a strong quantitative relationship to their relative biomass, estimated from length-weight regressions, for a wide range of metazoan taxa. The highest correlations were found for crustaceans and the lowest for meroplanktonic larvae. Our results show that the reported approach of using a metabarcoding marker with improved taxonomic resolution, universal coverage for metazoans, reduced primer bias, and availability of a comprehensive reference database, allow for rapid and relatively inexpensive processing of hundreds of samples at a higher taxonomic resolution than traditional zooplankton sorting. The described approach can therefore be widely applied for monitoring or ecological studies.