Precise crystallisation ages have been determined for a range of Apollo basalts from Pb-Pb isochrons generated using Secondary Ion Mass Spectrometry (SIMS) analyses of multiple accessory phases including K-feldspar, K-rich glass and phosphates. The samples analysed in this study include five Apollo 11 high-Ti basalts, one Apollo 14 high-Al basalt, seven Apollo 15 low-Ti basalts, and five Apollo 17 high-Ti basalts. Together with the samples analysed in two previous similar studies, Pb-Pb isochron ages have been determined for all of the major basaltic suites sampled during the Apollo missions. The accuracy of these ages has been assessed as part of a thorough review of existing age determinations for Apollo basalts, which reveals a good agreement with previous studies of the same samples, as well as with average ages that have been calculated for the emplacement of the different basaltic suites at the Apollo landing sites. Furthermore, the precision of the new age determinations helps to resolve distinctions between the ages of different basaltic suites in more detail than was previously possible. The proposed ages for the basaltic surface flows at the Apollo landing sites have been reviewed in light of these new sample ages. Finally, the data presented here have also been used to constrain the initial Pb isotopic compositions of the mare basalts, which indicate a significant degree of heterogeneity in the lunar mantle source regions, even among the basalts collected at individual landing sites.
Previous isotope studies of lunar samples have demonstrated that volatile loss was an important part of the early history of the Moon. The radiogenic U-Pb system, where Pb has a significantly lower T50% condensation temperature than U, has the capacity to both recognize and calibrate the extent of volatile loss but this approach has been hindered by terrestrial Pb contamination of samples. We employ a novel method that integrates analyses of individual samples by Ion Microprobe and Thermal Ionization mass spectrometry to correct for ubiquitous common Pb contamination, a method that results in significantly higher estimates for µ-values (238U/204Pb) than previously reported. Using this method, six of seven samples of low-Ti basaltic meteorites return µ-values between 1900 and 9600, values that are consistent with a re-evaluation of published results that return µ-values of 510–2900 for both low- and high-Ti basalts. While some degree of fractionation during partial melting may increase µ-values, we infer that the source region(s) for the basalts must also have had elevated µ-values by the time the lunar magma ocean solidified. Models to account for the available initial Pb isotopic compositions of lunar basalts in light of timing constraints from thermal modelling imply that their source regions had a µ-value of at least 280, consistent with the elevated µ-values of lunar basalts and that inferred for their sources. Such high µ-values are attributed to the preferential loss of more than 99% of the Pb over U relative to a precursor with a Mars-like composition in the aftermath of the giant impact. Such an extensive loss of Pb is consistent with previously reported losses of other elements with comparable volatility, namely Zn, Rb, Ga and CrO2. Finally, our modelling of highly-radiogenic lunar Pb isotopes assuming crystallization of the lunar magma ocean over 10′s of millions of years shows that the elevated µ-values allows for, but does not require, a young Moon formation age.
A SHRIMP 207 Pb/ 206 Pb zircon age of 1204 ± 10 Ma is reported for an east–west‐trending dolerite dyke from near York in the southwestern Yilgarn Craton. This age is identical within analytical uncertainty to previously reported ages of ca 1210 Ma for dykes from the central Wheatbelt and the Western and Eastern Goldfields. The consistency of the dyke ages and the wide areal extent of the dykes suggests that emplacement occurred as a single magmatic pulse at ca 1210 Ma throughout the southwestern Yilgarn Craton. The similarities between the age of the dykes and the ages of late events in the Albany–Fraser Orogeny, and the approximate parallelism of the east–west‐trending dykes to the margin of the orogen, raises the possibility that these events are related.
Despite more than 40 years of studying Apollo samples, the age and early evolution of the Moon remain contentious. Following the formation of the Moon in the aftermath of a giant impact, the resulting Lunar Magma Ocean (LMO) is predicted to have generated major geochemically distinct silicate reservoirs, including the sources of lunar basalts. Samples of these basalts, therefore, provide a unique opportunity to characterize these reservoirs. However, the precise timing and extent of geochemical fractionation is poorly constrained, not least due to the difficulty in determining accurate ages and initial Pb isotopic compositions of lunar basalts. Application of an in situ ion microprobe approach to Pb isotope analysis has allowed us to obtain precise crystallization ages from six lunar basalts, typically with an uncertainty of about ±10Ma, as well as constrain their initial Pb-isotopic compositions. This has enabled construction of a two-stage model for the Pb-isotopic evolution of lunar silicate reservoirs, which necessitates the prolonged existence of high-μ reservoirs in order to explain the very radiogenic compositions of the samples. Further, once firm constraints on U and Pb partitioning behaviour are established, this model has the potential to help distinguish between conflicting estimates for the age of the Moon. Nonetheless, we are able to constrain the timing of a lunar mantle reservoir differentiation event at 4376±18Ma, which is consistent with that derived from the Sm–Nd and Lu–Hf isotopic systems, and is interpreted as an average estimate of the time at which the high-μ urKREEP reservoir was established and the Ferroan Anorthosite (FAN) suite was formed.