In this paper, we investigated the vacuum arc-deposited tetrahedral amorphous carbon (ta-C) and nitrogen-doped ta-C (ta-C:N) thin films grown on silicon and stainless-steel foil substrates by the visible Raman Spectroscopy. We found that carbon films grown on silicon surfaces prefer more sp3 hybridized carbon compared to the stainless-steel foil, which prefer more sp2 hybridized carbon even though the films are grown concurrently under the same conditions. The impact energy of plasma ions modifies the interfacial layer formation, giving a strong dependence of the sp2/sp3 ratio with the substrate bias, behaving differently for different substrates. However, nitrogen doping in amorphous carbon thin films helps to increase sp2 contents uniformly on both the surfaces for a fixed substrate bias. Understanding such interfaces are of interest for many electronic, optoelectronic, and energy storage devices as these interfaces get buried and can influence the properties significantly.
The Anomalous Hall Effect (AHE) is an important quantity in determining the properties and understanding the behaviour of the two-dimensional electron system forming at the interface of SrTiO
We probe temperature-dependent changes in the semicrystalline microstructure of polyoxymethylene using a combination of modulated DSC, SAXS, and solid-state NMR to characterize macroscopic behavior, lamellar-level structure, and molecular environments, respectively, and correlate these with the change in mechanical properties probed using DMA and AFM. Two model samples are investigated: a melt crystallized sample prepared by injection molding and a sample obtained by crystallization from dilute solution. Our investigations reveal that, for both samples, there is an increase in crystalline motions and in the amorphous content on heating. DMA and AFM measurements reveal that the modulus of the molded sample decreases on heating to about 100 °C; however, there is a significant difference in behavior of the solution crystals, where we observe no significant decrease in stiffness (from AFM measurements). Thus, in contrast to previous reports, we demonstrate that the decrease in modulus on heating polyoxymethylene does not correlate with chain motions in the crystalline regions. We use SAXS to probe the semicrystalline morphology for the samples on heating and show that, for the molded sample, there is a distribution of lamellar thickness at room temperature and that the thin lamellae in this distribution melt on heating. In contrast to the behavior of the melt crystallized samples, the solution crystals exhibit no change in the lamellar stacking on heating to 150 °C. We also demonstrate that, on heating, the amorphous regions in the solution crystals always appear to have restricted mobility while there are mobile and low mobility amorphous regions in the molded samples. Our results suggest that, contrary to conventional belief, the decrease in modulus on heating polyoxymethylene arises not from motions in the crystalline lamellae but primarily from melting of thin lamellae.
Abstract The hysteretic insulator-to-metal transition of VO 2 is studied in detail for pulsed laser deposition grown thin films on TiO 2 substrates, under variation of temperature and applied bias currents. This system is of interest for novel electronics based on memristive concepts, in particular as the resistive transition in these films occurs close to room temperature. Multiple, stable resistance states can be set controllably in the temperature range of the hysteretic phase transition by tailored temperature sweeps or by Joule heating induced by current pulses.
Abstract We have studied the transport properties of LaTiO 3 /SrTiO 3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO 3 , including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Modulation in resistance switching characteristics of TiO2 thin film fabricated on aluminum substrate is investigated under optical illumination. The average thickness of TiO2 thin film is about 200 nm. The current–voltage characteristics of the Pt/TiO2/Al structure show a good rectifying property with unipolar resistive switching behavior. This resistive switching behavior is observed to be modulated by optical illumination. Photo-carriers generated during optical illumination shifts the set and reset voltage to lower values. This study is helpful for exploring optical effect in metal oxides as multifunctional materials and its applications in non-volatile memory devices.
The nanoscale electrical properties of chemical-solution-deposition (CSD)-derived BiFeO3 grown on pulsed-laser-ablated La0.67Sr0.33MnO3//SrTiO3 (001) thin film heterostructures are investigated using a host of scanning probe microscopy techniques, including electrostatic force microscopy (EFM), scanning Kelvin probe microscopy (SKPM), piezoresponse force microscopy (PFM), and conductive AFM (CAFM). EFM and SKPM confirm the p-type nature of the CSD-derived BFO thin films as well as charge accumulation at the film surface after electrical bias. For BiFeO3 films of a fixed thickness (∼35 nm), the local current–voltage (I–V) behavior obtained by CAFM is strongly dependent on the La0.67Sr0.33MnO3 bottom electrode thickness. BiFeO3 films on a 20 nm thick La0.67Sr0.33MnO3 demonstrate the typical switchable diode behavior governed by polarization orientation. However, when the thickness of La0.67Sr0.33MnO3 is reduced to less than 5 nm, the BiFeO3 films show only forward diode behaviors regardless of polarization orientation, when the applied bias is up to ±4 V. Higher sweep bias (i.e., ± 8 V) breaks down the diode, following which the BiFeO3 film shows strong resistive switching. The interface band structure for the ultrathin LSMO case, which is very sensitive to accumulation/depletion of carriers at the BFO–LSMO interface, is suggested as the trigger for this resistive switching.