Characteristics of peripheral arterial disease (PAD) are the occlusion or stenosis of multiple vessel sites caused mainly by atherosclerosis and chronic lower limb ischemia. To identify PAD susceptible loci, we conducted a genome-wide association study (GWAS) with 785 cases and 3,383 controls in a Japanese population using 431,666 single nucleotide polymorphisms (SNP). After staged analyses including a total of 3,164 cases and 20,134 controls, we identified 3 novel PAD susceptibility loci at IPO5/RAP2A, EDNRA and HDAC9 with genome wide significance (combined P = 6.8 x 10-14, 5.3 x 10-9 and 8.8 x 10-8, respectively). Fine-mapping at the IPO5/RAP2A locus revealed that rs9584669 conferred risk of PAD. Luciferase assay showed that the risk allele at this locus reduced expression levels of IPO5. To our knowledge, these are the first genetic risk factors for PAD.
Abstract Protein arginine methylation is a novel post‐translational modification regulating a diversity of cellular processes, including histone functions, but the roles of protein arginine methyltransferases (PRMTs) in human cancer are not well investigated. To address this issue, we first examined expression levels of genes belonging to the PRMT family and found significantly higher expression of PRMT1 and PRMT6 , both of which are Type I PRMTs, in cancer cells of various tissues than in non‐neoplastic cells. Abrogation of the expression of these genes with specific siRNAs significantly suppressed growth of bladder and lung cancer cells. Expression profile analysis using the cells transfected with the siRNAs indicated that PRMT1 and PRMT6 interplay in multiple pathways, supporting regulatory roles in the cell cycle, RNA processing and also DNA replication that are fundamentally important for cancer cell proliferation. Furthermore, we demonstrated that serum asymmetric dimethylarginine (ADMA) levels of a number of cancer cases are significantly higher than those of nontumor control cases. In summary, our results suggest that dysregulation of PRMT1 and PRMT6 can be involved in human carcinogenesis and that these Type I arginine methyltransferases are good therapeutic targets for various types of cancer.
Major depressive disorder (MDD) is a complex, heritable psychiatric disorder. Advanced statistical genetics for genome-wide association studies (GWASs) have suggested that the heritability of MDD is largely explained by common single nucleotide polymorphisms (SNPs). However, until recently, there has been little success in identifying MDD-associated SNPs. Here, based on an empirical Bayes estimation of a semi-parametric hierarchical mixture model using summary statistics from GWASs, we show that MDD has a distinctive polygenic architecture consisting of a relatively small number of risk variants (~17%), e.g., compared to schizophrenia (~42%). In addition, these risk variants were estimated to have very small effects (genotypic odds ratio ≤ 1.04 under the additive model). Based on the estimated architecture, the required sample size for detecting significant SNPs in a future GWAS was predicted to be exceptionally large. It is noteworthy that the number of genome-wide significant MDD-associated SNPs would rapidly increase when collecting 50,000 or more MDD-cases (and the same number of controls); it can reach as much as 100 SNPs out of nearly independent (linkage disequilibrium pruned) 100,000 SNPs for ~120,000 MDD-cases.
Chromothripsis is the massive but highly localized chromosomal rearrangement in response to a one-step catastrophic event, rather than an accumulation of a series of subsequent and random alterations. Chromothripsis occurs commonly in various human cancers and is thought to be associated with increased malignancy and carcinogenesis. However, the causes and consequences of chromothripsis remain unclear. Therefore, to identify the mechanism underlying the generation of chromothripsis, we investigated whether chromothripsis could be artificially induced by ionizing radiation. We first elicited DNA double-strand breaks in an oral squamous cell carcinoma cell line HOC313-P and its highly metastatic subline HOC313-LM, using Single Particle Irradiation system to Cell (SPICE), a focused vertical microbeam system designed to irradiate a spot within the nuclei of adhesive cells, and then established irradiated monoclonal sublines from them, respectively. SNP array analysis detected a number of chromosomal copy number alterations (CNAs) in these sublines, and one HOC313-LM-derived monoclonal subline irradiated with 200 protons by the microbeam displayed multiple CNAs involved locally in chromosome 7. Multi-color FISH showed a complex translocation of chromosome 7 involving chromosomes 11 and 12. Furthermore, whole genome sequencing analysis revealed multiple de novo complex chromosomal rearrangements localized in chromosomes 2, 5, 7, and 20, resembling chromothripsis. These findings suggested that localized ionizing irradiation within the nucleus may induce chromothripsis-like complex chromosomal alterations via local DNA damage in the nucleus.
A principal goal in human genetics is to provide the tools necessary to enable genome-wide association studies. Extensive information on the distribution of gene-based single-nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) patterns across the genome is required in order to choose markers for efficient implementation of this approach. To obtain such information, we have genotyped a large Japanese cohort for SNPs identified by systematic resequencing of more than 14 000 autosomal genes. Analysis of these data led to the conclusion that the Japanese population contains approximately 130 000 common autosomal gene haplotypes (frequency >0.05), of which more than 35% are identified in the present study. We also examined allele frequencies and LD patterns according to the position of variants within genes, and their distribution across the genome. We found lower allele variability at exonic SNP sites (both non-synonymous and synonymous) compared with non-exonic SNP sites, and greater average LD between SNPs within exons of the same gene compared with other SNP combinations, both of which could be signals of selection. LD was correlated with the recombination rate per physical distance as estimated from the meiotic map, but the strength of the relationship varied considerably in different regions of the genome. Unique LD patterns, characterized by frequent instances of high LD between non-adjacent SNPs punctuated by blocks of low LD, were found in a 7 Mb region on chromosome 6p that includes the MHC (major histocompatibility complex) locus and many non-MHC genes. These results demonstrate the complexity that must be taken into account when considering SNP variability and LD patterns, while also providing tools necessary for implementation of efficient genome-wide association studies.
The most challenging strategy for analyzing genome-wide polymorphisms and/or expression profiles is to solve multi-factor causal-relationship simultaneously. As the first step, we propose a framework of association study using maximum likelihood method that simultaneously handles genetic polymorphisms and epi-genetic information, e.g. environmental factors. We evaluate the theory by applying it to genotyped data of myocardial infarction (MI) patients.