Saccharomyces cerevisiae linker histone Hho1p is not essential for cell viability, and very little is known about its function in vivo. We show that deletion of HHO1 (hho1Delta) suppresses the defect in transcriptional silencing caused by a mutation in the globular domain of histone H4. hho1Delta also suppresses the reduction in HML silencing by the deletion of SIR1 that is involved in the establishment of silent chromatin at HML. We further show that hho1Delta suppresses changes in silent chromatin structure caused by the histone H4 mutation and sir1Delta. These results suggest that HHO1 plays a negative role in transcriptionally silent chromatin. We also provide evidence that Hho1p hinders the de novo establishment of silent chromatin but does not affect the stability of preexistent silent chromatin. Unlike canonical linker histones in higher eukaryotes that have a single conserved globular domain, Hho1p possesses two globular domains. We show that the carboxyl-terminal globular domain of Hho1p is dispensable for its function, suggesting that the mode of Hho1p action is similar to that of canonical linker histones.
Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.
DNA methyltransferase inhibitor (DNMTi) treatments have been used for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and have shown promising beneficial effects in some other types of cancers. Here, we demonstrate that the transcriptional repressor ZBTB38 is a critical regulator of the cellular response to DNMTi. Treatments with 5-azacytidine, or its derivatives decitabine and zebularine, lead to down-regulation of ZBTB38 protein expression in cancer cells, in parallel with cellular damage. The depletion of ZBTB38 by RNA interference enhances the toxicity of DNMTi in cell lines from leukemia and from various solid tumor types. Further we observed that inactivation of ZBTB38 causes the up-regulation of CDKN1C mRNA, a previously described indirect target of DNMTi. We show that CDKN1C is a key actor of DNMTi toxicity in cells lacking ZBTB38. Finally, in patients with MDS a high level of CDKN1C mRNA expression before treatment correlates with a better clinical response to a drug regimen combining 5-azacytidine and histone deacetylase inhibitors. Collectively, our results suggest that the ZBTB38 protein is a target of DNMTi and that its depletion potentiates the toxicity of DNMT inhibitors in cancer cells, providing new opportunities to enhance the response to DNMT inhibitor therapies in patients with MDS and other cancers.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.
The BTB domain is a protein-protein interaction motif that is found throughout eukaryotes. It determines a unique tri-dimensional fold with a large interaction surface. The exposed residues are highly variable and can permit dimerization and oligomerization, as well as interaction with a number of other proteins. BTB-containing proteins are numerous and control cellular processes that range from actin dynamics to cell-cycle regulation. Here, we review findings in the field of transcriptional regulation to illustrate how the high variability of the BTB has allowed related transcription factors to evolve different functional abilities. We then report how recent work has showed that, in spite of their high sequence divergence and apparently unrelated functions, many BTB-containing proteins have at least one shared role: the recruitment of degradation targets to E3 ubiquitin ligase complexes. Taken together, these findings illustrate diverse and convergent functions of a versatile protein-protein interaction domain.
In vertebrates, densely methylated DNA is associated with inactive transcription.Actors in this process include proteins of the MBD family that can recognize methylated CpGs and repress transcription.Kaiso, a structurally unrelated protein, has also been shown to bind methylated CGCGs through its three Kru ¨ppel-like C 2 H 2 zinc fingers.The human genome contains two uncharacterized proteins, ZBTB4 and ZBTB38, that contain Kaiso-like zinc fingers.We report that ZBTB4 and ZBTB38 bind methylated DNA in vitro and in vivo.Unlike Kaiso, they can bind single methylated CpGs.When transfected in mouse cells, the proteins colocalize with foci of heavily methylated satellite DNA and become delocalized upon loss of DNA methylation.Chromatin immunoprecipitation suggests that both of these proteins specifically bind to the methylated allele of the H19/Igf2 differentially methylated region.ZBTB4 and ZBTB38 repress the transcription of methylated templates in transfection assays.The two genes have distinct tissue-specific expression patterns, but both are highly expressed in the brain.Our results reveal the existence of a family of Kaiso-like proteins that bind methylated CpGs.Like proteins of the MBD family, they are able to repress transcription in a methyl-dependent manner, yet their tissue-specific expression pattern suggests nonoverlapping functions.