Abstract People with Down syndrome show cellular and clinical features of dysregulated aging of the immune system, including naïve-memory shift in the T cell compartment and increased incidence of autoimmunity. However, a quantitative understanding of how various immune compartments change with age in Down syndrome remains lacking. Here we performed deep immunophenotyping of a cohort of individuals with Down syndrome across the lifespan, selecting for individuals not affected by autoimmunity. We simultaneously interrogated age- and sex-matched healthy neurotypical controls and people with type 1 diabetes, as a representative autoimmune disease. We built a new analytical software, IMPACD, that enabled us to rapidly identify many features of immune dysregulation in Down syndrome that are recapitulated in other autoimmune diseases. We found significant quantitative and qualitative dysregulation of naïve CD4 + and CD8 + T cells in Down syndrome and identified IL-6 as a candidate driver of some of these changes, thus extending the consideration of immunopathologic cytokines in Down syndrome beyond interferons. Notably, we successfully used immune cellular composition to generate three quantitative models of aging (i.e. immune clocks) trained on control subjects. All three immune clocks demonstrated significantly advanced immune aging in people with Down syndrome. Notably, one of these clocks, informed by Down syndrome-relevant biology, also showed advanced immune aging in people with type 1 diabetes. Together, our findings demonstrate a novel approach to studying immune aging in Down syndrome which may have implications in the context of other autoimmune diseases. One Sentence Summary Permutational analysis of immune landscape reveals advanced immune aging in people with Down syndrome and in people with type 1 diabetes.
Celiac disease (CeD), caused by immune reactions to cereal gluten, is treated with gluten -elimination diets. Within hours of gluten exposure, either perorally or extraorally by intradermal injection, treated patients experience gastrointestinal symptoms. To test whether gluten exposure leads to systemic cytokine production time -related to symptoms, series of multiplex cytokine measurements were obtained in CeD patients after gluten challenge. Peptide injection elevated at least 15 plasma cytokines, with IL-2, IL-8, and IL-10 being most prominent (fold-change increase at 4 hours of 272, 11, and 1.2, respectively). IL-2 and IL-8 were the only cytokines elevated at 2 hours, preceding onset of symptoms. After gluten ingestion, IL-2 was the earliest and most prominent cytokine (15-fold change at 4 hours). Supported by studies of patient-derived gluten-specific T cell clones and primary lymphocytes, our observations indicate that gluten-specific CD4+ T cells are rapidly reactivated by antigen -exposure likely causing CeD-associated gastrointestinal symptoms.
Improved blood tests assessing the functional status of rare gluten-specific CD4+ T cells are needed to effectively monitor experimental therapies for coeliac disease (CD). Our aim was to develop a simple, but highly sensitive cytokine release assay (CRA) for gluten-specific CD4+ T cells that did not require patients to undergo a prior gluten challenge, and would be practical in large, multi-centre clinical trials. We developed an enhanced CRA and used it in a phase 2 clinical trial (“RESET CeD”) of Nexvax2, a peptide-based immunotherapy for CD. Two participants with treated CD were assessed in a pilot study prior to and six days after a 3-day gluten challenge. Dye-dilution proliferation in peripheral blood mononuclear cells (PBMC) was assessed, and IL-2, IFN-γ and IL-10 were measured by multiplex electrochemiluminescence immunoassay (ECL) after 24-hour gluten-peptide stimulation of whole blood or matched PBMC. Subsequently, gluten-specific CD4+ T cells in blood were assessed in a subgroup of the RESET CeD Study participants who received Nexvax2 (maintenance dose 900 μg, n = 12) or placebo (n = 9). The pilot study showed that gluten peptides induced IL-2, IFN-γ and IL-10 release from PBMCs attributable to CD4+ T cells, but the PBMC CRA was substantially less sensitive than whole blood CRA. Only modest gluten peptide-stimulated IL-2 release could be detected without prior gluten challenge using PBMC. In contrast, whole blood CRA enabled detection of IL-2 and IFN-γ before and after gluten challenge. IL-2 and IFN-γ release in whole blood required more than 6 hours incubation. Delay in whole blood incubation of more than three hours from collection substantially reduced antigen-stimulated IL-2 and IFN-γ secretion. Nexvax2, but not placebo treatment in the RESET CeD Study was associated with significant reductions in gluten peptide-stimulated whole blood IL-2 and IFN-γ release, and CD4+ T cell proliferation. We conclude that using fresh whole blood instead of PBMC substantially enhances cytokine secretion stimulated by gluten peptides, and enables assessment of rare gluten-specific CD4+ T cells without requiring CD patients to undertake a gluten challenge. Whole blood assessment coupled with ultra-sensitive cytokine detection shows promise in the monitoring of rare antigen-specific T cells in clinical studies.
Abstract Aim Several studies have shown that colchicine exhibits an improvement in the symptoms of knee osteoarthritis ( OA ) but its effect on disease progression is unknown. To clarify the mechanism of action this study was done to see if colchicine prevents degradation of collagen fiber network in OA by studying serum cartilage oligomeric matrix protein ( COMP ) levels, a marker of cartilage turnover, over a period of 1 year. Methods Seventy‐five patients received colchicine plus paracetamol and 75 received placebo alone for the same time period. Serum COMP assays were done at baseline, 2 months and 1 year by enzyme‐linked immunosorbent assay. These markers were compared between visits using repeated measures analysis of variance. Results Serum COMP levels in the paracetamol‐alone group did not show significant change between baseline and 2 months; however, there was a significant increase in serum COMP levels from 2 months to 1 year, suggesting increased uncoupling of proteoglycans from collagen and disease progression. No such change was seen in the colchicine group, signifying lack of progression of disease in this group. Conclusion Colchicine may act as a disease‐modifying agent in OA .
The second series antigen W27 has been found to have an increased frequency in ankylosing spondylitis (82 % of 17 patients) and juvenile rheumatoid arthritis (Still's disease) (29 % of 24 patients). Three family studies are presented, including one in which the antigen W27 occurs both in the absence and the presence of ankylosing spondylitis. It is suggested that this family illustrates that the relationship between W27 and sacro‐iliitis is affected by non‐HL–A genes. The development of clinical disease depends upon the coincidence of several factors in one individual, some of which are genetically controlled by two or more loci which are not necessarily linked.
Aggregation of the high-affinity receptor for IgE (FcεRI) in mast cells initiates activation events that lead to degranulation and release of inflammatory mediators. To better understand the signaling pathways and genes involved in mast cell activation, we developed a high-throughput mast cell degranulation assay suitable for RNA interference experiments using lentivirus-based short hairpin RNA (shRNA) delivery. We tested 432 shRNAs specific for 144 selected genes for effects on FcεRI-mediated mast cell degranulation and identified 15 potential regulators. In further studies, we focused on galectin-3 (Gal3), identified in this study as a negative regulator of mast cell degranulation. FcεRI-activated cells with Gal3 knockdown exhibited upregulated tyrosine phosphorylation of spleen tyrosine kinase and several other signal transduction molecules and enhanced calcium response. We show that Gal3 promotes internalization of IgE-FcεRI complexes; this may be related to our finding that Gal3 is a positive regulator of FcεRI ubiquitination. Furthermore, we found that Gal3 facilitates mast cell adhesion and motility on fibronectin but negatively regulates antigen-induced chemotaxis. The combined data indicate that Gal3 is involved in both positive and negative regulation of FcεRI-mediated signaling events in mast cells.