Post-transplant diabetes mellitus is a frequent complication among transplant recipients. Ligation of advanced glycation end products (AGEs) with their receptor on monocytes/macrophages plays important roles in the genesis of diabetic complications. The enhancement of adhesion molecule expression on monocytes/macrophages activates T-cells, reducing allograft survival. Out of four distinct AGE subtypes (AGE-2, AGE-3, AGE-4 and AGE-5), only AGE-2 and AGE-3 induced expression of intercellular adhesion molecules (ICAMs), output of cytokines and proliferation of lymphocytes, during the mixed lymphocyte reaction (MLR). Here we have assessed the role of histamine in the actions of AGEs during the MLR.Human peripheral blood cells were used in these experiments. Flow cytometry was used to examine the expression of the ICAM-1, B7.1, B7.2 and CD40. Production of the cytokine interferon-gamma, and levels of cAMP were determined by elisa. Lymphocyte proliferation was determined by [(3)H]-thymidine uptake.Histamine concentration dependently inhibited the action of AGE-2 and AGE-3. The actions of histamine were antagonized by an H(2)-receptor antagonist, famotidine, and mimicked by H(2)/H(4)-receptor agonists, dimaprit and 4-methylhistamine. The effects of histamine were reversed by a protein kinase A (PKA) inhibitor, H89, and mimicked by dibutyryl cAMP and an adenylate cyclase activator, forskolin.Histamine down-regulated AGE-2- and AGE-3-induced expression of adhesion molecules, cytokine production and lymphocyte proliferation via histamine H(2) receptors and the cAMP/PKA pathway.
BACKGROUND AND PURPOSE Advanced glycation end products (AGEs) subtypes, proteins or lipids that become glycated after exposure to sugars, can induce complications in diabetes. Among the various AGE subtypes, glyceraldehyde-derived AGE (AGE-2) and glycolaldehyde-derived AGE (AGE-3) are involved in inflammation in diabetic patients; monocytes are activated by these AGEs. Ciprofloxacin (CIP), a fluorinated 4-quinolone, is often used clinically to treat infections associated with diabetis due to its antibacterial properties. It also modulates immune responses in human peripheral blood mononuclear cells (PBMC) therefore we investigated the involvement of AGEs in these effects. EXPERIMENTAL APPROACH Expression of intercellular adhesion molecule (ICAM)-1, B7.1, B7.2 and CD40 was examined by flow cytometry. The production of tumour necrosis factor (TNF)-alpha, interferon (IFN)-gamma, prostaglandin E(2) (PGE(2)) and cAMP were determined by enzyme-linked immunosorbent assay. Cyclooxygenase (COX)-2 expression was determined by Western blot analysis. Lymphocyte proliferation was determined by [(3)H]-thymidine uptake. KEY RESULTS CIP induced PGE(2) production in monocytes, irrespective of the presence of AGE-2 and AGE-3, by enhancing COX-2 expression; this led to an elevation of intracellular cAMP in monocytes. Non-selective and selective COX-2 inhibitors, indomethacin and NS398, inhibited CIP-induced PGE(2) and cAMP production. In addition, CIP inhibited AGE-2- and AGE-3-induced expressions of ICAM-1, B7.1, B7.2 and CD40 in monocytes, the production of TNF-alpha and IFN-gamma and lymphocyte proliferation in PBMC. Indomethacin, NS398 and a protein kinase A inhibitor, H89, inhibited the actions of CIP. CONCLUSIONS AND IMPLICATIONS CIP exerts immunomodulatory activity via PGE(2), implying therapeutic potential of CIP for the treatment of AGE-2- and AGE-3-induced inflammatory responses.